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1. Introduction

The AdS/CFT conjecture originally proposed by Maldacena [1] and refined in [2, 3] is one

of the most powerful analytic tools for studying strong coupling effects in gauge theories.

There are many examples that go beyond the initially conjectured duality and first steps

in generalizing it to non-conformal models were taken in [4]. Later, very interesting de-

velopments led to the construction of the gauge-string duality in phenomenologically more

relevant theories i.e. minimally or non-supersymmetric gauge theories [5].

Conceptually, a clear setup for duals to theories with few SUSY’s is obtained by break-

ing conformality and (perhaps partially) supersymmetry, deforming N = 4 SYM with

relevant operators or VEV’s. The models put forward in [5] are very good examples of

this.

Even when there are important technical differences, in the same line of thought, we

can consider the model(s) developed by Klebanov and a distinguished list of physicists:

Witten [6], Nekrasov [7], Tseytlin [8], Strassler [9], Herzog and Gubser [10] and Dymarsky

and Seiberg [11]. In these papers (and many extensions of them), a far reaching idea has

been developed, namely to flow to a confining field theory with minimal SUSY starting

from an N = 1 SCFT with a product gauge group SU(Nc)×SU(Nc), bifundamental chiral

matter and a quartic superpotential for the chiral superfields.1 The superconformal field

theory described above rules the low energy dynamics of Nc D3-branes at the tip of the

conifold. Then conformality is broken by the addition of fractional branes, that effectively

unbalance the ranks of the gauge groups [7, 8]. A “duality cascade” starts and the flow to

the IR leaves us with a confining field theory [9]. Subtleties related to the last steps of the

cascade have been discussed in [10, 12]. All this interesting physics is very nicely described

with great detail in [13].

In this paper we will concentrate on a nonconformal theory without cascade. The

starting point is a Type IIB solution dual to an SU(Nc)×SU(Nc) N = 1 SCFT also known

as the Klebanov-Witten field theory/geometry. One of the aims of the paper is to add an

arbitrary large number of flavors to each of the gauge groups. The addition of fundamental

degrees of freedom is an important step toward the understanding of QCD-like dynamics,

in different regions of the space of parameters.

A very fructiferous idea used to add flavors to different field theories (using the string

dual) was described in [14] and then applied to various backgrounds, ‘flavoring’ different

dual field theories, in many subsequent publications (for a complete list see citations to [14]).

As it was clearly stated in the original paper, the procedure spelled out in [14] consists in

the addition of a finite number Nf of spacetime filling flavor D7-branes to the Nc → ∞
color D3-branes extending in the Minkowski directions, and the usual decoupling limit

(gs → 0, Nc → ∞, gsNc fixed) of the D3-branes is performed, keeping the number Nf of

flavor branes fixed. Then the D3-branes generate the geometry and the flavor branes only

minimize their worldvolume Dirac-Born-Infeld action in this background without deforming

it. This is the probe limit. In the dual description they are considering the addition of

1It is obvious that such a field theory is non-renormalizable and must be thought of as the IR of some

UV well defined theory. In [6] a UV completion in terms of an orbifolded N = 2 field theory is given.
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a finite number of flavors Nf to the large Nc gauge theory, in the strict double scaling ’t

Hooft limit (gYM → 0, Nc → ∞, λ = g2
YMNc fixed). In the lattice literature this is called

the ‘quenched’ approximation: the dynamics of the colors and its effect on the flavors

is completely taken into account, but the backreaction of the flavors onto the colors is

neglected. In the probe limit this approximation becomes exact.

It is interesting to go beyond this ‘quenched’ or ‘non-backreacting’ approximation and

see what happens when one adds a large number of flavors, of the same order of the number

of colors, and the backreaction effects of the flavor branes are considered. Indeed, many

phenomena that cannot be captured by the quenched approximation, might be apparent

when a string backreacted background is found.

In this paper we will propose a Type IIB dual to the field theory of Klebanov and

Witten, in the case in which a large number of flavors (Nf ∼ Nc) is added to each gauge

group. We will also present interesting generalizations of this to cases describing different

duals to N = 1 SCFT’s constructed from D3-branes placed at singularities.

Let us briefly describe the procedure we will follow, inspired mostly by the papers [15 –

17] and more recently [18, 19]. In those papers (dealing with the addition of many fun-

damentals in the non-critical string and Type IIB string respectively), flavors are added

into the dynamics of the dual background via the introduction of Nf spacetime filling

flavor branes, whose dynamics is given by a Dirac-Born-Infeld action. This dynamics is

intertwined with the usual Einstein-like action of IIB and a new solution is found, up to

technical subtleties described below.

1.1 Generalities of the procedure used

To illustrate the way flavor branes will be added, let us start by considering the background

of Type IIB supergravity that is conjectured to be dual to the Klebanov-Witten field theory:

an N = 1 SCFT with gauge group SU(Nc)×SU(Nc), two chiral multiplets of bifundamental

matter Ai, Bi, i = 1, 2 and a (classically irrelevant) quartic superpotential

W = λTr(AiBjAkBl) εikεjl . (1.1)

The dual Type IIB background reads

ds2 = h(r)−1/2dx2
1,3 + h(r)1/2

{
dr2 +

r2

6

∑

i=1,2

(dθ2
i + sin2 θi dϕ2

i )+ (1.2)

+
r2

9
(dψ +

∑

i=1,2

cos θi dϕi)
2

}

F5 =
1

gs
(1 + ∗) d4x ∧ dh(r)−1

h(r) =
27πgsNcα

′2

4r4
(1.3)

with constant dilaton and all the other fields in Type IIB supergravity vanish-

ing. The set of coordinates that will be used in the rest of the paper is xM =
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{x0, x1, x2, x3, r, θ1, ϕ1, θ2, ϕ2, ψ}. For the sake of brevity, in the following we will take

units is which gs = 1, α′ = 1.

We will add Nf spacetime filling D7-branes to this geometry, in a way that preserves

some amount of supersymmetry. This problem was studied in [20, 21] for the conformal

case and in [22] for the cascading theory. These authors found calibrated embeddings of

D7-branes which preserve (at least some fraction of) the supersymmetry of the background.

We will choose to put two sets of D7-branes on the surfaces parametrized by

ξα
1 = {x0, x1, x2, x3, r, θ2, ϕ2, ψ} θ1 = const. ϕ1 = const. ,

ξα
2 = {x0, x1, x2, x3, r, θ1, ϕ1, ψ} θ2 = const. ϕ2 = const. . (1.4)

Note that these two configurations are mutually supersymmetric with the background.

Moreover, since the two embeddings are noncompact, the gauge theory supported on the

D7’s has vanishing 4d effective coupling on the Minkowski directions; therefore the gauge

symmetry on them is seen as a flavor symmetry by the 4d gauge theory of interest. The two

sets of flavor branes introduce a U(Nf )×U(Nf ) symmetry,2 the expected flavor symmetry

with massless flavors. The configuration with two sets (two branches) can be deformed to a

single set, shifted from the origin, that represents massive flavors, and realizes the explicit

breaking of the flavor symmetry to the diagonal vector-like U(Nf ). Our configuration

(eq. (1.4)) for probes is nothing else than the z1 = 0 holomorphic embedding of [21].

We will then write an action for a system consisting of type IIB supergravity3 plus

D7-branes described by their Dirac-Born-Infeld action (in Einstein frame):

S =
1

2κ2
10

∫
d10x

√
−G

[
R − 1

2
∂Mφ∂Mφ − 1

2
e2φ|F1|2 −

1

4
|F5|2

]
+

−T7

Nf∑∫
d8ξ eφ

[√
−Ĝ

(1)
8 +

√
−Ĝ

(2)
8

]
+ T7

Nf∑ ∫
Ĉ8 , (1.5)

where we have chosen the normalization |Fp|2 = 1
p!FpFp(G

−1)p.

Notice that we did not excite the worldvolume gauge fields, but this is a freedom of the

approach we adopted. Otherwise one may need to find new suitable κ-symmetric embed-

dings.

These two sets of D7-branes are localized in their two transverse directions, hence

the equations of motion derived from (1.5) will be quite complicated to solve, due to the

presence of source terms (Dirac delta functions).

But we can take some advantage of the fact that we are adding lots of flavors. Indeed,

since we will have many (Nf ∼ Nc) flavor branes, we might think about distributing them

in a homogeneous way on their respective transverse directions. This ‘smearing procedure’

2The diagonal axial U(1) is anomalous
3The problems with writing an action for Type IIB that includes the self-duality condition are well

known. Here, we just mean a Lagrangian from which the equations of motion of Type IIB supergravity are

derived. The self-duality condition is imposed on the solutions.
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boils down to approximating

T7

Nf∑ ∫
d8ξ eφ

√
−Ĝ

(i)
8 → T7Nf

4π

∫
d10x eφ sin θi

√
−Ĝ

(i)
8

T7

Nf∑ ∫
Ĉ8 → T7Nf

4π

∫ [
V ol(Y1) + V ol(Y2)

]
∧ C8 , (1.6)

with V ol(Yi) = sin θi dθi ∧ dϕi the volume form of the S2’s.

This effectively generates a ten dimensional action

S =
1

2κ2
10

∫
d10x

√
−G

[
R − 1

2
∂Mφ∂Mφ − 1

2
e2φ|F1|2 −

1

4
|F5|2

]
+

− T7Nf

4π

∫
d10x eφ

∑

i=1,2

sin θi

√
−Ĝ

(i)
8 +

T7Nf

4π

∫ [
V ol(Y1) + V ol(Y2)

]
∧ C8 .

(1.7)

We can derive in the smeared case the following (not so involved) equations of motion,

coming from the action (1.7):

RMN − 1

2
GMNR =

1

2

(
∂Mφ∂Nφ − 1

2
GMN∂P φ∂P φ

)
+

1

2
e2φ

(
F

(1)
M F

(1)
N − 1

2
GMN |F (1)|2

)
+

+
1

96
F

(5)
MPQRSF

(5)PQRS
N + TMN

DM∂Mφ = e2φ|F1|2 +
2κ2

10T7√
−G

Nf

4π
eφ

∑

i=1,2

sin θi

√
−Ĝ

(i)
8

d
(
e2φ ∗ F1

)
= 0

dF1 = −2κ2
10T7

Nf

4π

[
V ol(Y1) + V ol(Y2)

]

dF5 = 0 . (1.8)

The modified Bianchi identity is obtained through F1 = −e−2φ ∗ F9, and comes from the

WZ part of the action (1.7). The contribution to the stress-energy tensor coming from the

two sets of Nf D7 flavor branes is given by

TMN =
2κ2

10√
−G

δSflavor

δGMN
= −Nf

4π

eφ

√
−G

∑

i=1,2

sin θi
1

2

√
−Ĝ

(i)
8 Ĝ

(i)αβ
8 δM

α δN
β , (1.9)

where α, β are coordinate indices on the D7. In the subsequent sections we will solve

the equations of motion (1.8)–(1.9) and will propose that this Type IIB background is

dual to the Klebanov-Witten field theory when two sets of Nf flavors are added for each

gauge group. We will actually find BPS equations for the purely bosonic background, by

imposing that the variations of the dilatino and gravitino vanish. We will verify that these

BPS first-order equations solve all the equations of motion (1.8).

Let us add some remarks on some important points about the resolution of the system.

First of all, it is clear from the Bianchi identity of F1 in (1.8) that we will not be able to

define the axion field C0 on open subsets.

– 5 –
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Regarding the solution of the equations of motion, we will proceed by proposing a

deformed background ansatz of the form

ds2 = h−1/2dx2
1,3 + h1/2

{
dr2 +

e2g

6

∑

i=1,2

(dθ2
i + sin2 θi dϕ2

i ) +
e2f

9
(dψ +

∑

i=1,2

cos θi dϕi)
2

}

F5 = (1 + ∗) d4x ∧ K dr (1.10)

F1 =
Nf

4π
(dψ + cos θ2 dϕ2 + cos θ1 dϕ1) .

Thanks to the smearing procedure, all the unknown function h, f , g, K and the dilaton φ

only depend on the radial coordinate r.

The Bianchi identity for the five-form field-strength gives

K h2 e4g+f = 27πNc , (1.11)

and we will obtain solutions to (1.8) by imposing that the BPS equations derived from the

vanishing of the gravitino and gaugino variations and the Bianchi identities are satisfied.

These will produce ordinary first-order equations for f(r), g(r), h(r), K(r), φ(r). We will

also be able to derive these BPS equations from a superpotential in the reduction of Type

IIB supergravity.

We will study in detail the dual field theory to the supergravity solutions mentioned

above, making a considerable number of matchings. The field theories turn out to have

positive β-function along the flow, exhibiting a Landau pole in the UV. In the IR we still

have a strongly coupled field theory, which is “almost conformal”. We will also generalize

all these results to the interesting case of a large class of different N = 1 SCFTs, deformed

by the addition of flavors. In particular we will be able to add flavors to every gauge theory

whose dual is AdS5 × M5, where M5 is a five-dimensional Sasaki-Einstein manifold. New

solutions will be found that describe the ‘unflavored’ case, making contact with old results.

Finally, a possible way of handling the massive flavor case is undertaken.

We have explained the strategy we adopt to add flavors, so this is perhaps a good place

to discuss some interesting issues. The reader might be wondering about the ‘smearing

procedure’ discussed above, what is its significance and effect on the dual gauge theory,

among other questions. It is clear that we smear the flavor branes just to be able to write

a 10-dimensional action that will produce ordinary (in contrast to partial) differential

equations without Dirac delta functions source terms.

The results we will show and the experience obtained in [17, 18] show that many

properties of the flavored field theory are still well captured by the solutions obtained

following the procedure described above. It is not clear what important phenomena on the

gauge theory we are losing in smearing, but see below for an important subtlety.

One relevant point to discuss is related to global symmetries. Let us go back to the

weak coupling (gsNc → 0) limit, in which we have branes living on a spacetime that is

the product of four Minkowski directions and the conifold. When all the flavor branes

of the two separate stacks (1.4) are on top of each other, the gauge symmetry on the

D7’s worldvolume is given by the product U(Nf ) × U(Nf ). When we take the decoupling

– 6 –
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fN D7

ψ

S 2
(     ,     ) θ1 

ϕ
1 2

ϕS 2 (     ,     )θ2

U(      )
f

N

f
N D7

U(      )
f

N
U(1 ) fN fN

U(1 )

Figure 1: We see on the left side the two stacks of Nf flavor-branes localized on each of their

respective S2’s (they wrap the other S2). The flavor group is clearly U(Nf ) × U(Nf ). After the

smearing on the right side of the figure, this global symmetry is broken to U(1)Nf−1 ×U(1)Nf−1 ×
U(1)B × U(1)A.

limit for the D3-branes α′ → 0, with fixed gsNc and keeping constant the energies of

the excitations on the branes, we are left with a solution of Type IIB supergravity that

we propose is dual to the Klebanov-Witten field theory with Nf flavors for both gauge

groups [21]. In this case the flavor symmetry is U(Nf ) × U(Nf ), where the axial U(1) is

anomalous. This background would be for sure very involved, since it would depend on

the coordinates (r, θ1, θ2), if the embeddings of the two stacks of D7-branes are θ1 = 0 and

θ2 = 0, respectively. When we smear the Nf D7-branes, we are breaking U(Nf ) → U(1)Nf

(see figure 1).

There is one important point to contrast with [17]. In that paper, a smearing is also

proposed but it is argued that the dual field theory (a version of N = 1 SQCD with a

quartic superpotential in the quark superfields) possesses U(Nf ) global flavor symmetry.

As in all backgrounds constructed on wrapped branes, the effects of the Kaluza-Klein

modes play an important rôle and the dual field theory behaves as 4-dimensional only in

the far IR.4 In this regime, when the internal manifold shrinks to small size, for energies

below this inverse size we do not effectively see the breaking U(Nf ) → U(1)Nf . In contrast,

the backgrounds obtained by placing D-branes at conical singularities, like [6]–[10] as well

as our solution, describe a four dimensional field theory all along the flow.

It might be interesting for the reader to note that the papers in the line of [14] are

working in the context of ’t Hooft expansion [24]. When the ratio Nf/Nc is very small, one

can ignore the backreaction effects of the flavor branes on the geometry. This is the dual

version to the suppression of effects that include the running of fundamentals in internal

loops. Even when these fundamentals are massless, their effects while running in loops

are suppressed by a factor of O(Nf/Nc). But in the strict ’t Hooft limit, if the number of

flavors is kept fixed, the corrections due to the quantum dynamics of quarks exactly vanish.

4For a detailed study of the role and dynamics of the KK modes in wrapped brane setups, see [23].
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In the cases considered in [17, 18], the ratio above is of order one and we are working on

the so called Veneziano’s topological expansion [25]. New physics (beyond the ’t Hooft

limit) is captured by Veneziano’s proposal: we will be able to see this in the present paper

that considers the backreaction of the flavor branes, just like was observed in [17, 18], in

contrast with the papers that worked in the ’t Hooft approximation as proposed in [14].

Another point that is worth elaborating on is whether there is a limit on the number

of D7-branes that can be added. Indeed, since a D7-brane is a codimension-two object

(like a vortex in 2 + 1 dimensions) its gravity solution will generate a deficit angle; having

many seven branes, will basically “eat-up” the transverse space. This led to the conclusion

that solutions that can be globally extended cannot have more than a maximum number

of twelve D7-branes [26] (and exactly twenty-four in compact spaces). In this paper we

are adding a number Nf → ∞ of D7-branes, certainly larger that the bound mentioned

above. Like in the papers [27, 28], we will adopt the attitude of analyzing the behavior of

our solutions and we will see that they give sensible results. But there is more than that:

the smearing procedure distributes the D7’s all over this 2-dimensional compact space, in

such a way that the equation for the axion-dilaton is not the one in the vacuum at any

point. This avoids the constraint on the number of D7-branes, which came from solving

the equation of motion for the axion-dilaton outside sources.

Finally, we must emphasize that this is not the first paper that deals with the D3/D7

system in the context of “AdS/CFT with flavors”. Indeed, very good papers have been

written where this problem was faced looking for a solution where the flavor branes are

replaced by fluxes in terms of the Type IIB supergravity fields, dilaton and an axion (φ,

C0). The BPS equations for the D3/D7 system in cases preserving 8 supercharges were

written in [27, 28], a partially explicit solution of the equations of motion in the presence

of sources was found in [29] for the orbifold case, more interesting geometrical aspects were

discussed in [30] and an involved solution was found in [31], where some matching with

gauge theory behavior was attempted.5

The papers [27 – 31] were written with the idea of letting the flavor branes backreact.

One qualitative difference with respect to what we explained above is that the authors

of [27, 28, 30, 31] consider the case in which D3-branes are added in the background

produced by D7-branes and solve the Laplace equation, in this case for the deformation

introduced by the D3’s. In contrast, we consider the background produced by the D3-branes

and we deform it to take into account the “smeared” backreaction of the D7-branes. The

two procedures are different.

One advantage of the approach proposed in [17] is that the flavor degrees of freedom

explicitly appear in the DBI action that allows the introduction of SU(Nf ) gauge fields in

the bulk that are dual to the global symmetry in the dual field theory, while it is difficult to

see how they will appear in a Type IIB solution that only includes RR fluxes. Our approach

produces a simple SUSY solution to (1.8) and the analysis of gauge theory effects is simple

to do. Besides, the proposal of [17] used in the present work is the natural continuation

5Even though slightly unrelated to the D3/D7 system, we cannot resist here to mention the beautiful

solution found by Cherkis and Hashimoto for a localized D2/D6 system [32].
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of the many successful results obtained in papers in the line of [14]. Indeed, we are just

following the idea of [14] for a large number of flavor branes.

1.2 Organization of this paper

This paper is organized in two main parts. In part I we will present the addition of flavors to

the Klebanov-Witten solution. A detailed analysis of the supergravity plus branes solutions

and the study of the dual gauge theory, as read from the above mentioned solutions, is

performed. A reader mainly interested with the line of research, but who does not want to

go in full details, should be happy reading this introduction, part I and appendix C.

The readers who intend to work on this subject and want to study these results in

more technical detail or want to appreciate the beauty and generality in our formalism are

referred to part II. Also in part II the reader will find a sketch of how to deal with massive

flavors using these techniques.

Those readers who are not attracted by the physics of flavor using AdS/CFT tech-

niques, but just want to learn about some new solutions (born out of our ‘deformed back-

grounds’ as described above), should read the introduction and the appendix B.

Some other appendices complement nicely our presentation.

The section of conclusions includes also a summary of results and proposes future

directions that the interested reader might want to pursue.

2. Part I: adding flavors to the Klebanov-Witten field theory

2.1 What to expect from field theory considerations

In this first part we will address in detail the problem of adding a large number of back-

reacting non-compact D7-branes to the Klebanov-Witten Type IIB supergravity solution,

which describes D3-branes at the tip of the conifold. Before presenting the solution and

describing how it is obtained, we would like to have a look at the dual field theory, and

sketch which are the features we expect.

For this purpose, we consider the case of probe D7-branes, and mainly summarize what

was pointed out in [21]. The conifold is a non-compact Calabi-Yau 3-fold, defined by one

equation in C
4:

z1z2 − z3z4 = 0 . (2.1)

Since this equation is invariant under a real rescaling of the variables, the conifold is a

real cone, whose base is the Sasaki-Einstein space T 1,1 [6, 33]. It can be shown that T 1,1

is a U(1) bundle over the Kähler-Einstein space S2 × S2, and that its isometry group is

SU(2) × SU(2) × U(1).

Klebanov and Witten [6] obtained an interesting example of gauge/gravity duality

by placing a stack of Nc D3-branes at the apex of the conifold. The branes source the

RR 5-form flux and warp the geometry, giving the Type IIB supergravity solution (1.2).

The dual field theory, describing the IR dynamics on the worldvolume of the branes, has

gauge group SU(Nc) × SU(Nc) and matter fields Ai, Bi, i = 1, 2 which transform in

the bifundamental representations (Nc,Nc) and (Nc, Nc) respectively. The theory has
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also a quartic superpotential WKW = λTr(AiBjAkBl) εikεjl. The field theory is N = 1

superconformal, and the anomaly-free U(1) R-symmetry of the superconformal algebra is

dual to the U(1) isometry of the fiber in T 1,1, generated by the so-called Reeb vector. In the

algebraic definition (2.1) it is realized as a common phase rotation of the four coordinates:

zi → e−iαzi.

The addition of flavors, transforming in the fundamental and antifundamental repre-

sentations of the gauge groups, can be addressed by including probe D7-branes into the

geometry, following the procedure proposed in [14]. This was done in [21], where the em-

bedding of the flavor branes and the corresponding superpotential for the fundamental and

antifundamental superfields were found. The D7-branes have four Minkowski directions

parallel to the stack of D3-branes transverse to the conifold, whereas the other four direc-

tions are embedded holomorphically in the conifold. In particular, D7-branes describing

massless flavors can be introduced by considering the holomorphic noncompact embedding

z1 = 0. The flavors, which correspond to 3-7 and 7-3 strings, are massless because the

D7-branes intersect the D3-branes. Note that the D7-branes have two branches, described

by z1 = z3 = 0 and z1 = z4 = 0, each one corresponding to a stack. The presence of two

branches is required by RR tadpole cancellation: in the field theory this amounts to adding

flavors in vector-like representations to each gauge group, hence preventing gauge anoma-

lies. The fundamental and antifundamental chiral superfields of the two gauge groups will

be denoted as q, q̃ and Q, Q̃ respectively, and the gauge invariant and flavor invariant

superpotential proposed in [21] is

W = WKW + Wf , (2.2)

where

WKW = λ Tr(AiBkAjBl) εijεkl (2.3)

is the SU(2)×SU(2) invariant Klebanov-Witten superpotential for the bifundamental fields.

For a stack of flavor branes, it is conventional to take the coupling between bifundamentals

and quarks at a given point of S2 as

Wf = h1 q̃aA1Qa + h2 Q̃aB1qa . (2.4)

This coupling between bifundamental fields and the fundamental and antifundamental

flavors arises from the D7 embedding z1 = 0. The explicit indices are flavor indices.

This superpotential, as well as the holomorphic embedding z1 = 0, explicitly breaks the

SU(2)×SU(2) global symmetry (this global symmetry will be recovered after the smearing).

The field content and the relevant gauge and flavor symmetries of the theory are

summarized in table 1 and depicted in the quiver diagram in figure 2.

The U(1)R R-symmetry is preserved at the classical level by the inclusion of D7-branes

embedded in such a way to describe massless flavors, as can be seen from the fact that

the equation z1 = 0 is invariant under the rotation zi → e−iαzi and the D7 wrap the

R-symmetry circle. Nevertheless the U(1)R turns out to be anomalous after the addition

of flavors, due to the nontrivial C0 gauge potential sourced by the D7. The baryonic

symmetry U(1)B inside the flavor group is anomaly free, being vector-like.
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Nf

Nf

NcNc

Q̃

Q

A1, A2

q̃

q

B1, B2

Figure 2: Quiver diagram of the Klebanov-Witten gauge theory with flavors. Circles are gauge

groups while squares are non-dynamical flavor groups.

SU(Nc)
2 SU(Nf )2 SU(2)2 U(1)R U(1)B U(1)B′

A (Nc,Nc) (1, 1) (2, 1) 1/2 0 1

B (Nc, Nc) (1, 1) (1, 2) 1/2 0 −1

q (Nc, 1) (Nf , 1) (1, 1) 3/4 1 1

q̃ (Nc, 1) (1, Nf ) (1, 1) 3/4 −1 −1

Q (1, Nc) (1,Nf ) (1, 1) 3/4 1 0

Q̃ (1,Nc) (Nf , 1) (1, 1) 3/4 −1 0

Table 1: Field content and symmetries of the KW field theory with massless flavors.

As was noted in [21], the theory including D7-brane probes is also invariant under a

rescaling zi → βzi, therefore the field theory is scale invariant in the probe approximation.

In this limit the scaling dimension of the bifundamental fields is 3/4 and the one of the

flavor fields is 9/8, as required by power counting in the superpotential. Then the beta

function for the holomorphic gauge couplings in the Wilsonian scheme is

β 8π2

g2
i

= −16π2

g3
i

βgi
= −3

4
Nf βλi

=
1

(4π)2
3Nf

2Nc
λ2

i , (2.5)

with λi = g2
i Nc the ’t Hooft couplings. In the strict planar ’t Hooft limit (zero order

in Nf/Nc), the field theory has a fixed point specified by the afore-mentioned choice of

scaling dimensions, because the beta functions of the superpotential couplings and the ’t

Hooft couplings are zero. As soon as Nf/Nc corrections are taken into account, the field

theory has no fixed points for nontrivial values of all couplings. Rather it displays a “near

conformal point” with vanishing beta functions for the superpotential couplings, but non-

vanishing beta functions for the ’t Hooft couplings. In a Nf/Nc expansion, formula (2.5)

holds at order Nf/Nc if the anomalous dimensions of the bifundamental fields Aj and

Bj do not get corrections at this order. A priori it is difficult to expect such a behavior
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from string theory, since the energy-momentum tensor of the flavor branes will induce

backreaction effects on the geometry at linear order in Nf/Nc, differently from the fluxes,

which will backreact at order (Nf/Nc)
2.

Moreover, since we are adding flavors to a conformal theory, we can naively expect a

Landau pole to appear in the UV. Conversely, we expect the theory to be slightly away

from conformality in the far IR.

2.2 The setup and the BPS equations

The starting point for adding backreacting branes to a given background is the identification

of the supersymmetric embeddings in that background, that is the analysis of probe branes.

In [20], by imposing κ-symmetry on the brane world-volume, the following supersymmetric

embeddings for D7-branes on the Klebanov-Witten background were found:

ξα
1 = {x0, x1, x2, x3, r, θ2, ϕ2, ψ} θ1 = const. ϕ1 = const.

ξα
2 = {x0, x1, x2, x3, r, θ1, ϕ1, ψ} θ2 = const. ϕ2 = const.

(2.6)

They are precisely the two branches of the supersymmetric embedding z1 = 0 first proposed

in [21]. Each branch realizes a U(Nf ) symmetry group, giving the total flavor symmetry

group U(Nf ) × U(Nf ) of massless flavors (a diagonal axial U(1)A is anomalous in field

theory, which is dual to the corresponding gauge field getting massive in string theory

through Green-Schwarz mechanism). We choose these embeddings because of the following

properties: they reach the tip of the cone and intersect the color D3-branes; wrap the

U(1)R circle corresponding to rotations ψ → ψ + α; are invariant under radial rescalings.

So they realize in field theory massless flavors, without breaking explicitly the U(1)R and

the conformal symmetry. Actually, they are both broken by quantum effects. Moreover the

configuration does not break the Z2 symmetry of the conifold solution which corresponds

to exchanging the two gauge groups.

The fact that we must include both the branches is due to D7-charge tadpole cancel-

lation, which is dual to the absence of gauge anomalies in field theory. An example of a

(non-singular) 2-submanifold in the conifold geometry is D2 = {θ1 = θ2, ϕ1 = 2π−ϕ2, ψ =

const, r = const}. The charge distributions of the two branches are

ω(1) =
∑

Nf

δ(2)(θ1, ϕ1) dθ1 ∧ dϕ1 ω(2) =
∑

Nf

δ(2)(θ2, ϕ2) dθ2 ∧ dϕ2 , (2.7)

where the sum is over the various D7-branes, possibly localized at different points,

and a correctly normalized scalar delta function (localized on an 8-submanifold) is

δ(2)(x)
√

−Ĝ8/
√
−G. Integrating the two D7-charges on the 2-submanifold we get:

∫

D2

ω(1) = −Nf

∫

D2

ω(2) = Nf . (2.8)

Thus, whilst the two branches have separately non-vanishing tadpole, putting an equal

number of them on the two sides the total D7-charge cancels. This remains valid for all

(non-singular) 2-submanifolds.
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The embedding can be deformed into a single D7 that only reaches a minimum radius,

and realizes a merging of the two branches. This corresponds to giving mass to flavors and

explicitly breaking the flavor symmetry to SU(Nf ) and the R-symmetry completely. These

embeddings were also found in [20].

Each embedding preserves the same four supercharges, irrespectively to where the

branes are located on the two 2-spheres parameterized by (θ1, ϕ1) and (θ2, ϕ2). Thus we

can smear the distribution and still preserve the same amount of supersymmetry. The 2-

form charge distribution is readily obtained to be the same as the volume forms on the two

2-spheres in the geometry, and through the modified Bianchi identity it sources the flux

F1.
6 We expect to obtain a solution where all the functions have only radial dependence.

Moreover we were careful in never breaking the Z2 symmetry that exchanges the two

spheres. The natural ansatz is:

ds2 = h(r)−1/2dx2
1,3 + h(r)1/2

{
dr2+

+
e2g(r)

6

∑

i=1,2

(dθ2
i + sin2 θi dϕ2

i ) +
e2f(r)

9
(dψ +

∑

i=1,2

cos θi dϕi)
2

} (2.9)

φ = φ(r) (2.10)

F5 = K(r)h(r)3/4
(
ex0x1x2x3r − eθ1ϕ1θ2ϕ2ψ

)
(2.11)

F1 =
Nf

4π

(
dψ + cos θ1 dϕ1 + cos θ2 dϕ2

)
=

3Nf

4π
h(r)−1/4e−f(r) eψ (2.12)

dF1 = −Nf

4π

(
sin θ1 dθ1 ∧ dϕ1 + sin θ2 dθ2 ∧ dϕ2

)
, (2.13)

where the unknown functions are h(r), g(r), f(r), φ(r) and K(r). The angular coordinates

θi are defined in [0, π] while the others have fundamental domain ϕi ∈ [0, 2π) and ψ ∈ [0, 4π)

with appropriate patching rules.7 The vielbein is:

exi

= h−1/4 dxi

eθi =
1√
6
h1/4eg dθi

eψ =
1

3
h1/4ef (dψ + cos θ1 dϕ1 + cos θ2 dϕ2) .

er = h1/4 dr

eϕi =
1√
6
h1/4eg sin θidϕi (2.14)

6The modified Bianchi identity of F1 is obtained from the Wess-Zumino action term with F1 = −e−2φ∗F9.
7The correct patching rules on T 1,1 in the coordinates of (1.2) are:

ψ ≡ ψ + 4π ,

 

ϕ1

ψ

!

≡

 

ϕ1 + 2π

ψ + 2π

!

,

 

ϕ2

ψ

!

≡

 

ϕ2 + 2π

ψ + 2π

!

.

In fact the space is a U(1) fibration over S2 × S2. The first identification is just the one of the fiber. On

the base 2-spheres we must identify the angular variables according to ϕi ≡ ϕi + 2π, but this could be

accompanied by a shift in the fiber. To understand it, draw the very short (in proper length) path around

the point θ1 = 0: θ1 ¿ 1, ϕ1 = t = 4π − ψ with t ∈ [0, 2π] a parameter along the path. To make it closed,

a rotation in ϕ1 must be accompanied by an half-rotation in ψ. This gives the second identification.
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With this ansatz the field equation d
(
e2φ ∗F1) = 0 is automatically satisfied, as well as the

self-duality condition F5 = ∗F5. The Bianchi identity dF5 = 0 gives:

K h2 e4g+f = 27πNc , (2.15)

and K(r) can be solved. The previous normalization comes from Dirac quantization of the

D3-brane charge: ∫

T 1,1

F5 = 2κ2
10T3 Nc = (2π)4Nc , (2.16)

using a suitable orientation for the volume form of the T 1,1 space and the fact that

V ol(T 1,1) = 16
27π3.

We impose that the ansatz preserves the same four supersymmetries as the probe D7-

branes on the Klebanov-Witten solution. With this purpose, let us write the supersym-

metric variations of the dilatino and gravitino in type IIB supergravity. For a background

of the type we are analyzing, these variations are:

δε λ =
1

2
ΓM

(
∂M φ − ieφ F

(1)
M

)
ε

δε ψM = ∇M ε + i
eφ

4
F

(1)
M ε +

i

1920
F

(5)
PQRST ΓPQRST ΓM ε , (2.17)

where we have adopted the formalism in which ε is a complex Weyl spinor of fixed ten-

dimensional chirality (see appendix A). It turns out (see section 3.2) that the Killing

spinors ε (which solve the equations δε λ = δε ψM = 0) in the frame basis (2.14) can be

written as:

ε = h− 1

8 e−
i
2
ψ η (2.18)

where η is a constant spinor which satisfies

Γx0x1x2x3 η = −iη

Γθ1ϕ1 η = Γθ2ϕ2 η = iη , Γrψ η = −iη . (2.19)

Moreover, from (2.17) we get the following system of first-order BPS differential equations:





g′ = ef−2g

f ′ = e−f (3 − 2e2f−2g) − 3Nf

8π
eφ−f

φ′ =
3Nf

4π
eφ−f

h′ = −27πNc e−f−4g

(2.20)

Notice that taking Nf = 0 in the BPS system (2.20) we simply get equations for a

deformation of the Klebanov-Witten solution without any addition of flavor branes. Solving

the system we find both the original KW background and the solution for D3-branes at a

conifold singularity, as well as other solutions which correspond on the gauge theory side

to giving VEV to dimension 6 operators. These solutions were considered in [34, 35], and

are shown to follow from our system in appendix B.
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In order to be sure that the BPS equations (2.20) capture the correct dynamics, we

have to check that the Einstein, Maxwell and dilaton equations are solved. This can be done

even before finding actual solutions of the BPS system. We checked that the first-order

system (2.20) (and the Bianchi identity) in fact implies the second order Einstein, Maxwell

and dilaton differential equations. An analytic general proof will be given in section 3.3.

In the coordinate basis the stress-energy tensor (1.9) is computed to be:

Tµν = −3Nf

2π
h−1eφ−2g ηµν (2.21)

Trr = −3Nf

2π
eφ−2g (2.22)

Tθiθi
= −Nf

8π
eφ (2.23)

Tϕiϕi
= − Nf

24π
eφ−2g

[
4e2f cos2 θi + 3e2g sin2 θi

]
(2.24)

Tϕ1ϕ2
= −Nf

6π
eφ+2f−2g cos θ1 cos θ2 (2.25)

Tϕiψ = −Nf

6π
eφ+2f−2g cos θi (2.26)

Tψψ = −Nf

6π
eφ+2f−2g . (2.27)

It is correctly linear in Nf . We did not explicitly check the Dirac-Born-Infeld equations

for the D7-brane distribution. We expect them to be solved because of κ-symmetry (su-

persymmetry) on their world-volume.

Solution with general couplings. We can generalize our set of solutions by switching

on non-vanishing VEVs for the bulk gauge potentials C2 and B2. We show that this can be

done without modifying the previous set of equations, and the two parameters are present

for every solution of them. The condition is that the gauge potentials are flat, that is

with vanishing field-strength. They correspond thus to (higher rank) Wilson lines for the

corresponding bundles.

Let us switch on the following fields:

C2 = c ω2 B2 = b ω2 , (2.28)

where the 2-form ω2 is Poincaré dual to the 2-cycle D2:

D2 = {θ1 = θ2, ϕ1 = 2π − ϕ2, ψ = const, r = const} (2.29)

ω2 =
1

8π

(
sin θ1 dθ1 ∧ dϕ1 − sin θ2 dθ2 ∧ dϕ2

)
,

∫

D2

ω2 = 1 . (2.30)

We see that F(3) = 0 and H(3) = 0. So the supersymmetry variations are not modified, nei-

ther are the gauge invariant field-strength definitions. In particular the BPS system (2.20)

does not change.

Consider the effects on the action (the argument is valid both for localized and smeared

branes). It can be written as a bulk term plus the D7-brane terms:

S = Sbulk − T7

∫
d8ξ eφ

√
− det(Ĝ8 + F) + T7

∫ [∑
q
Ĉq ∧ eF

]
8

, (2.31)
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with F = B̂2 + 2πα′ F is the D7 gauge invariant field-strength, and hat means pulled-back

quantities. To get solutions of the κ-symmetry conditions and of the equations of motion,

we must take F such that

F = B̂2 + 2πα′ F = 0 . (2.32)

Notice that there is a solution for F because B2 is flat: dB̂2 = d̂B2 = 0. With this choice

κ-symmetry is preserved as before, since it depends on the combination F . The dilaton

equation is fulfilled. The Bianchi identities and the bulk field-strength equations of motion

are not modified, since the WZ term only sources C8. The energy momentum tensor is not

modified, so the Einstein equations are fulfilled. The last steps are the equations of B2 and

A1 (the gauge potential on the D7). For this notice that they can be written:

d
δS

δF
= 2πα′ d

δSbrane

δF = 0 (2.33)

δS

δB2
=

δSbulk

δB2
+

δSbrane

δF = 0 . (2.34)

The first is solved by F = 0 since in the equation all the terms are linear or higher order

in F . This is because the brane action does not contain terms linear in F , and this is true

provided C6 = 0 (which in turn is possible only if C2 is flat). The second equation then

reduces to δSbulk

δB2
= 0, which amounts to d(e−φ ∗ H3) = 0 and is solved.

As we will see in section 2.5, being able to switch on arbitrary constant values c and

b for the (flat) gauge potentials, we can freely tune the two gauge couplings (actually the

two renormalization invariant scales Λ’s) and the two theta angles [6, 36]. This turns out

to break the Z2 symmetry that exchanges the two gauge groups, even if the breaking is

mild and only affects C2 and B2, while the metric and all the field-strength continue to

have that symmetry. However this does not modify the behavior of the gauge theory.

2.3 The solution in type IIB supergravity

The BPS system (2.20) can be solved through the change of radial variable

ef d

dr
≡ d

dρ
⇒ e−fdr = dρ . (2.35)

We get the new system:

ġ = e2f−2g (2.36)

ḟ = 3 − 2e2f−2g − 3Nf

8π
eφ (2.37)

φ̇ =
3Nf

4π
eφ (2.38)

ḣ = −27πNc e−4g , (2.39)

where derivatives are taken with respect to ρ.

Equation (2.38) can be solved first. By absorbing an integration constant in a shift of

the radial coordinate ρ, we get

eφ = − 4π

3Nf

1

ρ
⇒ ρ < 0 . (2.40)
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The solution is thus defined only up to a maximal radius ρMAX = 0 where the dilaton

diverges. As we will see, it corresponds to a Landau pole in the ultraviolet (UV) of the

gauge theory. On the contrary for ρ → −∞, which corresponds in the gauge theory to the

infrared (IR), the string coupling goes to zero. Note however that the solution could stop

at a finite negative ρMIN due to integration constants or, for example, more dynamically,

due to the presence of massive flavors. Then define

u = 2f − 2g ⇒ u̇ = 6(1 − eu) +
1

ρ
, (2.41)

whose solution is

eu =
−6ρ e6ρ

(1 − 6ρ)e6ρ + c1
. (2.42)

The constant of integration c1 cannot be reabsorbed, and according to its value the

solution dramatically changes in the IR. A systematic analysis of the various behaviors is

presented in section 2.4. The value of c1 determines whether there is a (negative) minimum

value for the radial coordinate ρ. The requirement that the function eu be positive defines

three cases:

−1 < c1 < 0 → ρMIN ≤ ρ ≤ 0

c1 = 0 → −∞ < ρ ≤ 0

c1 > 0 → −∞ < ρ ≤ 0 .

In the case −1 < c1 < 0, the minimum value ρMIN is given by an implicit equation. It can

be useful to plot this value as a function of c1:

-1 -0.8 -0.6 -0.4 -0.2
C1

-1

-0.8

-0.6

-0.4

-0.2

ΡMIN

0 = (1− 6ρMIN) e6ρMIN + c1

As it is clear from the graph, as c1 → −1+ the range of the solution in ρ between the IR

and the UV Landau pole shrinks to zero size, while in the limit c1 → 0− we no longer have

a minimum radius.

The functions g(ρ) and f(ρ) can be analytically integrated, while the warp factor h(ρ)

and the original radial coordinate r(ρ) cannot (in the particular case c1 = 0 we found an

explicit expression for the warp factor). By absorbing an irrelevant integration constant
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into a rescaling of r and x0,1,2,3, we get:

eg =
[
(1 − 6ρ)e6ρ + c1

]1/6
(2.43)

ef =
√

−6ρ e3ρ
[
(1 − 6ρ)e6ρ + c1

]−1/3
(2.44)

h(ρ) = −27πNc

∫ ρ

0
e−4g + c2 (2.45)

r(ρ) =

∫ ρ

ef . (2.46)

This solution is a very important result of our paper. We accomplished in finding a su-

pergravity solution describing a (large) Nf number of backreacting D7-branes, smeared on

the background produced by D3-branes at the tip of a conifold geometry.

The constant c1 and c2 correspond in field theory to switching on VEV’s for relevant

operators, as we will see in section 2.5.3. Moreover, in the new radial coordinate ρ, the

metric reads

ds2 =h− 1

2 dx2
1,3+h

1

2 e2f

{
dρ2+

e2g−2f

6

∑

i=1,2

(dθ2
i +sin2 θi dϕ2

i )+
1

9
(dψ+

∑

i=1,2

cos θi dϕi)
2

}
.

(2.47)

2.4 Analysis of the solution: asymptotics and singularities

We perform here a systematic analysis of the possible solutions of the BPS system, and

study the asymptotics in the IR and in the UV. In this section we will make use of the

following formula for the Ricci scalar curvature, which can be obtained for solutions of the

BPS system:

R = −2
3Nf

4π
h−1/2e−2g+ 1

2
φ

[
7 + 4

3Nf

4π
e2g−2f+φ

]
. (2.48)

2.4.1 The solution with c1 = 0

Although the warp factor h(ρ) cannot be analytically integrated in general, it can be if the

integration constant c1 is equal to 0. Indeed, introducing the incomplete gamma function,

defined as follows:

Γ[a, x] ≡
∫ ∞

x
ta−1e−tdt −−−−→

x→−∞
ei2πae−x

(
1

x

)1−a {
1 + O

( 1

x

)}
, (2.49)

we can integrate

h(ρ) = −27πNc

∫
dρ

e−4ρ

(1 − 6ρ)2/3
+ c2

=
9

2
πNc(

3

2e2
)1/3Γ[

1

3
,−2

3
+ 4ρ] + c2

' 27

4
πNc(−6ρ)−2/3e−4ρ for ρ → −∞ .

(2.50)
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The warp factor diverges for ρ → −∞, and the integration constant c2 disappears in the

IR. Moreover, if we integrate the proper line element ds from a finite point to ρ = −∞, we

see that the throat has an infinite invariant length.

The function r(ρ) cannot be given as an analytic integral, but using the asymptotic

behavior of ef for ρ → −∞ we can approximately integrate it:

r(ρ) ' 61/6
[
(−ρ)1/6eρ +

1

6
Γ[

1

6
,−ρ]

]
+ c3 (2.51)

in the IR. Fixing r → 0 when ρ → −∞ we set c3 = 0. We approximate further on

r(ρ) ' (−6ρ)1/6eρ . (2.52)

Substituting r in the asymptotic behavior of the functions appearing in the metric, we find

that up to logarithmic corrections of relative order 1/| log(r)|:

eg(r) ' ef(r) ' r

h(r) ' 27πNc

4

1

r4
.

(2.53)

Therefore the geometry approaches AdS5×T 1,1 with logarithmic corrections in the IR limit

ρ → −∞.

2.4.2 UV limit

The solutions with backreacting flavors have a Landau pole in the ultraviolet (ρ → 0−),

since the dilaton diverges (see (2.40)). The asymptotic behaviors of the functions appearing

in the metric are:

e2g ' (1 + c1)
1/3

[
1 − 6ρ2

1 + c1
+ O(ρ3)

]
(2.54)

e2f ' −6ρ (1 + c1)
−2/3

[
1 + 6ρ + O(ρ2)

]
(2.55)

h ' c2 + 27πNc(1 + c1)
−2/3

[
− ρ − 4

1 + c1
ρ3 + O(ρ4)

]
. (2.56)

Note that we have used (2.45) for the warp factor. One concludes that h(ρ) is monotonically

decreasing with ρ; if it is positive at some radius, then it is positive down to the IR. If

the integration constant c2 is larger than zero, h is always positive and approaches c2 at

the Landau pole (UV). If c2 = 0, then h goes to zero at the pole. If c2 is negative, then

the warp factor vanishes at ρMAX < 0 before reaching the pole (and the curvature diverges

there). The physically relevant solutions seem to have c2 > 0.

The curvature invariants, evaluated in string frame, diverge when ρ → 0−, indicating

that the supergravity description cannot be trusted in the UV. For instance the Ricci scalar

R ∼ (−ρ)−5/2 if c2 6= 0, whereas R ∼ (−ρ)−3 if c2 = 0. If c2 < 0, then the Ricci scalar

R ∼ (ρMAX − ρ)−1/2 when ρ → ρ−MAX.
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2.4.3 IR limit

The IR (ρ → −∞) limit of the geometry of the flavored solutions is independent of the

number of flavors, if we neglect logarithmic corrections to the leading term. Indeed, at

the leading order, flavors decouple from the theory in the IR (see the discussion below

eq. (2.5)). The counterpart in our supergravity plus branes solution is evident when we

look at the BPS system (2.20): when ρ → −∞ the eφ term disappears from the system,

together with all the backreaction effects of the D7-branes (see appendix C for a detailed

analysis of this phenomena), therefore the system reduces to the unflavored one.

• c1 = 0

The asymptotics of the functions appearing in the metric in the IR limit ρ → −∞
are:

eg ' ef ' (−6ρ)1/6eρ (2.57)

h ' 27

4
πNc(−6ρ)−2/3e−4ρ . (2.58)

Formula (2.48) implies that the scalar curvature in string frame vanishes in the IR

limit: R(S) ∼ (−ρ)−1/2 → 0. An analogous but lengthier formula for the square of

the Ricci tensor gives

R
(S)
MNR(S) MN =

160

9π2

Nf

Nc
(−ρ) + O(1) → ∞ , (2.59)

thus the supergravity description presents a singularity and some care is needed when

computing observables from it. The same quantities in Einstein frame have limiting

behavior R(E) ∼ (−ρ)−1/2 → 0 and R
(E)
MNR(E) MN → 640/(27πNc).

• c1 > 0

The asymptotics in the limit ρ → −∞ are:

eg ' c
1/6
1 (2.60)

ef ' c
−1/3
1 (−6ρ)1/2e3ρ (2.61)

h ' 27πNcc
−2/3
1 (−ρ) . (2.62)

Although the radial coordinate ranges down to −∞, the throat has a finite invariant

length. The Ricci scalar in string frame is R ∼ (−ρ)−3e−6ρ → −∞.

• c1 < 0

In this case the IR limit is ρ → ρMIN. The asymptotics in this limit are:

eg '
(
− 6ρMINe6ρMIN

)1/6
(6ρ − 6ρMIN)1/6 (2.63)

ef '
(
− 6ρMINe6ρMIN

)1/6
(6ρ − 6ρMIN)−1/3 (2.64)

h ' const. > 0 . (2.65)

The throat has a finite invariant length. The Ricci scalar in string frame is R ∼
(ρ − ρMIN)−1/3 → ∞.
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Using the criterion in [37], that proposes the IR singularity to be physically acceptable if

gtt is bounded near the IR problematic point, we observe that these singular geometries

are all acceptable. Gauge theory physics can be read from these supergravity backgrounds.

We call them “good singularities”.

2.5 Detailed study of the dual field theory

In this section we are going to undertake a detailed analysis of the dual gauge theory

features, reproduced by the supergravity solution. The first issue we want to address is

what is the effect of the smearing on the gauge theory dual.

As we wrote above, the addition to the supergravity solution of one stack of local-

ized noncompact D7-branes at z1 = 0 put in the field theory flavors coupled through a

superpotential term

W = λTr(AiBkAjBl) εijεkl + h1 q̃aA1Qa + h2 Q̃aB1qa , (2.66)

where we explicitly wrote the flavor indices a. For this particular embedding the two

branches are localized, say, at θ1 = 0 and θ2 = 0 respectively on the two spheres. One can

exhibit a lot of features in common with the supergravity plus D7-branes solution:

• the theory has U(Nf )×U(Nf ) flavor symmetry (the diagonal axial U(1)A is anoma-

lous), each group corresponding to one branch of D7’s;

• putting only one branch there are gauge anomalies in QFT and a tadpole in SUGRA,

while for two branches they cancel;

• adding a mass term for the fundamentals the flavor symmetry is broken to the diag-

onal U(Nf ), while in SUGRA there are embeddings moved away from the origin for

which the two branches merge.

The SU(2) × SU(2) part of the isometry group of the background without D7’s is

broken by the presence of localized branes. It amounts to separate rotations of the two S2

in the geometry and shifts the location of the branches. Its action is realized through the

superpotential, and exploiting its action we can obtain the superpotential for D7-branes

localized in other places. The two bifundamental doublets Aj and Bj transform as spinors

of the respective SU(2). So the flavor superpotential term for a configuration in which the

two branches are located at x and y on the two spheres can be obtained by identifying two

rotations that bring the north pole to x and y. There is of course a U(1)×U(1) ambiguity

in this. Then we have to act with the corresponding SU(2) matrices Ux and Uy on the

vectors (A1, A2) and (B1, B2) (which transform in the (2, 1) and (1,2) representations)

respectively, and select the first vector component. In summary we can write 8

Wf = h1 q̃x
[
Ux

(
A1

A2

)]
1
Qx + h2 Q̃y

[
Uy

(
B1

B2

)]
1
qy , (2.67)

8In case the two gauge couplings and theta angles are equal, we could appeal to the Z2 symmetry that

exchanges them to argue |h1| = |h2|, but no more because of the ambiguities.
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where the notation q̃x, Qx stands for the flavors coming from a first D7 branch being at x,

and the same for a second D7 branch at y.

To understand the fate of the two phase ambiguities in the couplings h1 and h2, we

appeal to symmetries. The U(1) action which gives (q, q̃, Q, Q̃) charges (1,−1,−1, 1) is a

symmetry explicitly broken by the flavor superpotential. The freedom of redefining the

flavor fields acting with this U(1) can be exploited to reduce to the case in which the phase

of the two holomorphic couplings is the same. The U(1) action with charges (1, 1, 1, 1) is

anomalous with equal anomalies for both the gauge groups, and it can be used to absorb

the phase ambiguity into a shift of the sum of Yang-Mills theta angles θYM
1 + θYM

2 (while

the difference holds steady). This is what happens for D7-branes on flat spacetime. The

ambiguity we mentioned amounts to rotations of the transverse R
2 space, whose only effect

is a shift of C0. As we show in the next section, the value of C0 is our way of measuring

the sum of theta angles through probe D(-1)-branes. Notice that if we put in our setup

many separate stacks of D7’s, all their superpotential U(1) ambiguities can be reabsorbed

in a single shift of C0.

From a physical point of view, the smearing corresponds to put the D7-branes at

different points on the two spheres, distributing each branch on one of the 2-spheres. This

is done homogeneously so that there is one D7 at every point of S2. The non-anomalous

flavor symmetry is broken from U(1)B × SU(Nf )R × SU(Nf )L (localized configuration) to

U(1)B × U(1)
Nf−1
V × U(1)

Nf−1
A (smeared configuration).9

Let us introduce a pair of flavor indices (x, y) that naturally live on S2×S2 and specify

the D7. The superpotential for the whole system of smeared D7-branes is just the sum

(actually an integral) over the indices (x, y) of the previous contributions:

W = λTr(AiBkAjBl) εijεkl + h1

∫

S2

d2x q̃x
[
Ux

(
A1

A2

)]
1
Qx + h2

∫

S2

d2y Q̃y
[
Uy

(
B1

B2

)]
1
qy .

(2.68)

Again, all the U(1) ambiguities have been reabsorbed in field redefinitions and a global

shift of θYM
1 + θYM

2 .

In this expression the SU(2)A × SU(2)B symmetry is manifest: rotations of the bulk

fields Aj, Bj leave the superpotential invariant because they can be reabsorbed in rotations

of the dummy indices (x, y). In fact, the action of SU(2)A × SU(2)B on the flavors is a

subgroup of the broken U(Nf ) × U(Nf ) flavor symmetry. In the smeared configuration,

there is a D7-brane at each point of the spheres and the group SU(2)2 rotates all the D7’s in

a rigid way, moving each D7 where another was. So it is a flavor transformation contained

in U(Nf )2. By combining this action with a rotation of Ai and Bi, we get precisely the

claimed symmetry.

Even if written in an involved fashion, the superpotential (2.68) does not spoil the

features of the gauge theory. In particular, the addition of a flavor mass term still would

9The axial U(1) which gives charges (1, 1,−1,−1) to one set of fields (qx, q̃x, Qx, Q̃x) coming from a

single D7, is an anomalous symmetry. For every D7-brane we consider, the anomaly amounts to a shift

of the same two theta angles of the gauge theory. So we can combine this U(1) with an axial rotation of

all the flavor fields, and get an anomaly free symmetry. In total, from Nf D7’s we can find Nf − 1 such

anomaly free axial U(1) symmetries.
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give rise to the symmetry breaking pattern

U(1)B × U(1)
Nf−1
V × U(1)

Nf−1
A → U(1)

Nf

V .

2.5.1 Holomorphic gauge couplings and β-functions

In order to extract information on the gauge theory from the supergravity solution, we

need to know the holographic relations between the gauge couplings, the theta angles

and the supergravity fields. These formulae can be properly derived only in the orbifold

R
1,3 × C × C

2/Z2, where string theory can be quantized, by considering fractional branes

placed at the singularity. The near-horizon geometry describing the IR dynamics on a

stack of N regular branes at the singularity is AdS5 ×S5/Z2. The dual gauge theory is an

N = 2 SU(N) × SU(N) SCFT with bifundamental hypermultiplets. In N = 1 language,

an N = 2 vector multiplet decomposes into a vector multiplet and a chiral multiplet in

the adjoint of the gauge group, whereas a bifundamental hypermultiplet decomposes into

two bifundamental chiral multiplets. Klebanov and Witten [6] recognized that giving equal

(but opposite) complex mass parameters to the adjoint chiral superfields of this N = 2

SCFT, an RG flow starts whose IR fixed point is described by the gauge theory dual to

the AdS5 × T 1,1 geometry.

In the N = 2 orbifold theory, the holographic relations can be derived exactly. The

result is the following:

4π2

g2
1

+
4π2

g2
2

=
πe−φ

gs
(2.69)

4π2

g2
1

− 4π2

g2
2

=
e−φ

gs

[
1

2πα′

∫

S2

B2 − π (mod 2π)

]
(2.70)

θYM
1 = πC0 +

1

2π

∫

S2

C2 (mod 2π) (2.71)

θYM
2 = πC0 −

1

2π

∫

S2

C2 (mod 2π) (2.72)

where the integrals are performed over the 2-sphere that shrinks at the orbifold fixed point

and could be blown-up. The ambiguity in (2.70) is the 2π periodicity of 1
2πα′

∫
S2

B2 which

comes from the quantization condition on H3 (if fractional branes are absent). A shift of

2π amounts to move to a dual description of the gauge theory.10 The ambiguities of RR

fields are more subtle: the periodicities in (2.71) and (2.72) correspond to the two kinds of

fractional D(-1)-branes appearing in the theory. The angles θYM
1 and θYM

2 come from the

imaginary parts of the action of the two kinds of fractional Euclidean D(-1) branes. Both

of them are then defined modulo 2π in the quantum field theory:

(θYM
1 , θYM

2 ) ≡ (θYM
1 + 2π , θYM

2 ) ≡ (θYM
1 , θYM

2 + 2π) . (2.73)

10In the KW theory, this is Seiberg duality. Notice that the periodicity must fail once flavor fields are

added.
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πC0 = θ1+θ2

2
π 2π

1

2π

∫
S2C2 =

θ1 − θ2

2

0

π

−π

Figure 3: Unit cell of the lattice of Yang-Mills θ angles and RR fields integrals.

On the string theory side the periodicities exactly match: an Euclidean fractional D(-1)-

brane enters the functional integral with a term exp
{
−8π2

g2
j

+iθYM
j

}
.11 Hence the imaginary

part in the exponent is defined modulo 2π in the quantum string theory. The identifica-

tion (2.73) of the field theory translates on the string side in:

(πC0 ,
1

2π

∫

S2

C2) ≡ (πC0 + π ,
1

2π

∫

S2

C2 + π) ≡ (πC0 + π ,
1

2π

∫

S2

C2 − π) . (2.74)

The lattice is shown in figure 3. The vectors of the unit cell drawn in the figure are the

ones defined by fractional branes.

From figure 3 and (2.74) we can see that:

πC0 ≡ πC0 + 2π . (2.75)

This is indeed the identification that arises from considering a regular D(-1) brane, which

can be seen as a linear superposition of the two kinds of fractional D(-1)-branes. Notice that

the closed string field C0 in this orbifold has periodicity 2, differently from the periodicity

1 in flat space. This is due to the fact that in the orbifold the fundamental physical objects

are the fractional branes.

Usually in the literature the afore-mentioned holographic relations were assumed to

hold also in the conifold case. Strassler remarked in [13] that for the conifold theory

the formulae for the sum of the gauge couplings and the sum of theta angles need to

be corrected. We expect that the formula for the sum of theta angles is correct as far

as anomalies are concerned, since anomalies do not change in RG flows. Instead the

formula (2.69) may need to be corrected in the KW theory: in general the dilaton could

be identified with some combination of the gauge and superpotential couplings.

Let us now make contact with our supergravity solution. In the smeared solution,

since dF1 6= 0 at every point, it is not possible to define a scalar potential C0 such that

11We have written the complexified gauge coupling instead of the supergravity fields for the sake of

brevity: the use of the dictionary is understood.
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F1 = dC0. We by-pass this problem by restricting our attention to the non-compact 4-cycle

defined by {ρ, ψ, θ1 = θ2, ϕ1 = 2π − ϕ2} [41](note that it wraps the R-symmetry direction

ψ), so that we can pull-back on it and write

F eff
1 =

Nf

4π
dψ (2.76)

and therefore

Ceff
0 =

Nf

4π
(ψ − ψ0) . (2.77)

Now we can identify:

8π2

g2
= π e−φ = −3Nf

4
ρ (2.78)

θYM
1 + θYM

2 =
Nf

2
(ψ − ψ0) , (2.79)

where we suppose for simplicity the two gauge couplings to be equal (g1 = g2 ≡ g). The

generalization to an arbitrary constant B2 is straightforward since the difference of the

inverse squared gauge couplings does not run. Although, as discussed above, one cannot

be sure of the validity of (2.78), we can try to extract some information.

Let us first compute the β-function of the gauge couplings. The identification (2.69)

allows us to define a “radial” β-function that we can directly compute from supergrav-

ity [38]:

β
(ρ)
8π2

g2

≡ ∂

∂ρ

8π2

g2
= π

∂e−φ

∂ρ
= −3Nf

4
. (2.80)

(Compare this result with eq. (2.5)). The physical β-function defined in the field theory is

of course:

β 8π2

g2

≡ ∂

∂ log µ
Λ

8π2

g2
, (2.81)

where µ is the subtraction scale and Λ is a renormalization group invariant scale. In order

to get the precise field theory β-function from the supergravity computation one needs the

energy-radius relation ρ = ρ
( µ

Λ

)
, from which β = β(ρ) ∂ρ/∂ log µ

Λ . In general, for non-

conformal duals, the radius-energy relation depends on the phenomenon one is interested

in and accounts for the scheme-dependence in the field theory.

Even without knowing the radius-energy relation, there is some physical information

that we can extract from the radial β-function (2.80). In particular, being the energy-radius

relation ρ = ρ
( µ

Λ

)
monotonically increasing, the signs of the two beta functions coincide.

In our case, using r = µ
Λ and eq. (2.52), one gets matching between (2.5) and (2.80).

2.5.2 R-symmetry anomaly and vacua

Now we move to the computation of the U(1)R anomaly. On the field theory side we follow

the convention that the R-charge of the superspace Grassmann coordinates is R[ϑ] = 1.

This fixes the R-charge of the gauginos R[λ] = 1. Let us consider an infinitesimal R-

symmetry transformation and calculate the U(1)R − SU(Nc) − SU(Nc) triangle anomaly.

The anomaly coefficient in front of the instanton density of a gauge group is
∑

f RfT [R(f)],
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where the sum runs over the fermions f , Rf is the R-charge of the fermion and T [R(f)] is the

Dynkin index of the gauge group representation R(f) the fermion belongs to, normalized

as T [R(fund.)] = 1 and T [R(adj.)] = 2Nc. Consequently the anomaly relation in our theory

is the following:

∂µJµ
R = −Nf

2

1

32π2

(
F a

µν F̃µν
a + Ga

µνG̃µν
a

)
, (2.82)

or in other words, under a U(1)R transformation of parameter ε, for both gauge groups the

theta angles transform as

θYM
i → θYM

i − Nf

2
ε . (2.83)

On the string/gravity side a U(1)R transformation of parameter ε is realized (in our

conventions) by the shift ψ → ψ − 2ε. This can be derived from the transformation of the

complex variables (2.1), which under a U(1)R rotation get zi → e−iεzi, or directly by the

decomposition of the 10d spinor ε into 4d and 6d factors and the identification of the 4d

anti-supercharge with the 4d spinor. By means of the dictionary (2.79) we obtain:

θYM
1 + θYM

2 → θYM
1 + θYM

2 − 2
Nf

2
ε , (2.84)

in perfect agreement with (2.83).

The U(1)R anomaly is responsible for the breaking of the symmetry group, but usually

a discrete subgroup survives. Disjoint physically equivalent vacua, not connected by other

continuous symmetries, can be distinguished thanks to the formation of domain walls

among them, whose tension could also be measured. We want to read the discrete symmetry

subgroup of U(1)R and the number of vacua both from field theory and supergravity. In

field theory the U(1)R action has an extended periodicity (range of inequivalent parameters)

ε ∈ [0, 8π) instead of the usual 2π periodicity, because the minimal charge is 1/4. Let us

remark however that when ε is a multiple of 2π the transformation is not an R-symmetry,

since it commutes with supersymmetry. The global symmetry group contains the baryonic

symmetry U(1)B as well, whose parameter we call α ∈ [0, 2π), and the two actions U(1)R
and U(1)B satisfy the following relation: UR(4π) = UB(π). Therefore the group manifold

U(1)R ×U(1)B is parameterized by ε ∈ [0, 4π), α ∈ [0, 2π) (this parameterization realizes a

nontrivial torus) and U(1)B is a true symmetry of the theory. The theta angle shift (2.83)

allows us to conclude that the U(1)R anomaly breaks the symmetry according to U(1)R ×
U(1)B → ZNf

× U(1)B , where the latter is given by ε = 4nπ/Nf (n = 0, 1, . . . , Nf − 1),

α ∈ [0, 2π).

Coming to the string side, the solution for the metric, the dilaton and the field strengths

is invariant under arbitrary shifts of ψ. But the nontrivial profile of C0, which can be probed

by D(-1)-branes for instance, breaks this symmetry. The presence of DBI actions in the

functional integral tells us that the RR potentials are quantized, in particular C0 is defined

modulo integers. Taking the formula (2.77) and using the periodicity 4π of ψ, we conclude

that the true invariance of the solution is indeed ZNf
.

One can be interested in computing the domain wall tension in the field theory by

means of its dual description in terms of a D5-brane with 3 directions wrapped on a
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3-sphere (see [39] for a review in the conifold geometry). It is easy to see that, as in

Klebanov-Witten theory, this object is stable only at r = 0 (ρ → −∞), where the domain

wall is tensionless.

2.5.3 The UV and IR behaviors

The supergravity solution allows us to extract the IR dynamics of the KW field theory

with massless flavors. Really what we obtained is a class of solutions, parameterized by

two integration constants c1 and c2. Momentarily, we will say something about their

meaning but anyway some properties are independent of them.

The fact that the β-function is always positive, with the only critical point at van-

ishing gauge coupling, tell us that the theory is irreparably driven to that point, unless

the supergravity approximation breaks down before (c1 < 0), for instance because of the

presence of curvature singularities. Using the ρ coordinate this is clear-cut. In cases where

the string coupling falls to zero in the IR, the gravitational coupling of the D7 to the bulk

fields also goes to zero and the branes tend to decouple. The signature of this is in equation

(2.37) of the BPS system: the quantity eφNf can be thought of as the effective size of the

flavor backreaction which indeed vanish in the far IR. The upshot is that flavors can be

considered as an “irrelevant deformation” of the AdS5 × T 1,1 geometry.

The usual technique for studying deformations of an AdS5 geometry is through the

GKPW [2, 3] formula in AdS/CFT. Looking at the asymptotic behavior of fields in the

AdS5 effective theory:12

δΦ = a r∆−4 + c r−∆ , (2.85)

we read, on the CFT side, that the deformation is H = HCFT +aO with c = 〈O〉 the VEV

of the operator corresponding to the field Φ, and ∆ the quantum dimension of the operator

O. Alternatively, one can compute the effective 5d action and look for the masses of the

fields, from which the dimension is extracted with the formula:

∆ = 2 +
√

4 + m2 , (2.86)

with the mass expressed in units of inverse AdS radius. We computed the 5d effective

action for the particular deformations ef(r), eg(r) and φ(r) and including the D7-brane

action terms (the details are in section 3). After diagonalization of the effective Kähler

potential, we got a scalar potential V containing a lot of information. First of all, minima

of V corresponds to the AdS5 geometries, that is conformal points in field theory. The only

minimum is formally at eφ = 0, and has the AdS5 × T 1,1 geometry. Then, expanding the

potential at quadratic order the masses of the fields can be read; from here we deduce that

we have operators of dimension 6 and 8 taking VEV, and a marginally irrelevant operator

inserted.13

12Notice that usually the GKPW prescription or the holographic renormalization methods are used when

we may have flows starting from a conformal point in the UV. In this case, our conformal point is in the

IR and one may doubt about the validity in this unconventional case. See section 6 in the paper [40] for an

indication that applying the prescription in an IR point makes sense, even when the UV geometry is very

far away from AdS5 × M5. We thank Kostas Skenderis for correspondence on this issue.
13To distinguish between a VEV and an insertion we have to appeal to the first criterium described in

eq. (2.85) and below.
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The operators taking VEV where already identified in [8, 35]. The dimension 8 op-

erator is TrF 4 and represents the deformation from the conformal KW solution to the

non-conformal 3-brane solution. The dimension 6 operator is a combination of the opera-

tors Tr(WαW̄α)2 and represents a relative metric deformation between the S2 × S2 base

and the U(1) fiber of T 1,1. The marginally irrelevant insertion is the flavor superpotential,

which would be marginal at the hypothetic AdS5 (conformal) point with eφ = 0, but is in

fact irrelevant driving the gauge coupling to zero in the IR and to very large values in the

UV. Let us add that the scalar potential V can be derived from a superpotential W , from

which in turn the BPS system (2.20) can be obtained.

Since in the IR the flavor branes undergo a sort of decoupling, the relevant deformations

dominate and their treatment is much the same as for the unflavored Klebanov-Witten

solution [8, 35, 13]. We are not going to repeat it here, and we will concentrate on the case

c1 = c2 = 0. The supergravity solution flows in the IR to the AdS5 × T 1,1 solution (with

corrections of relative order 1/| log(r)|). On one hand the R-charges and the anomalous

dimensions tend to the almost conformal values:

RA,B =
1

2

Rq,Q =
3

4

γA,B = −1

2

γq,Q =
1

4
.

(2.87)

Using the formula for the β-function of a superpotential dimensionless coupling:

βh̃ = h̃
[
− 3 +

∑
Φ

(
1 +

γΦ

2

)]
, (2.88)

where Φ are the fields appearing in the superpotential term, we obtain that the total

superpotential (2.68) is indeed marginal. On the other hand the gauge coupling flows

to zero. Being at an almost conformal point, we can derive the radius-energy relation

through rescalings of the radial and Minkowski direction, getting r = µ/Λ. Then the

supergravity beta function coincides with the exact (perturbative) holomorphic β-function

(in the Wilsonian scheme):14

βg = − g3

16π2

[
3Nc − 2Nc(1 − γA) − Nf (1 − γf )

]
. (2.89)

If we are allowed to trust the orbifold relation (2.69) relating gauge coupling constants

and dilaton, we conclude that the gauge coupling flows to zero in the IR. This fact could

perhaps explain the divergence of the curvature invariants in string frame [4], as revealed

by (2.59). The field theory would enter the perturbative regime at this point. However,

it is hard to understand why the anomalous dimensions of the fields are large while the

theory seems to become perturbative. For this reason, we question the validity in the

conifold case of the holographic relation (2.69), that can be derived only for the orbifold.

14Here it is manifest why the SUGRA β-function computed in this context with probe branes matches the

field theory one, even if this requires the absence of order Nf /Nc corrections to the anomalous dimensions

γA,B , which one does not know how to derive (the stress-energy tensor is linear in Nf/Nc). It is because

those corrections are really of order eφNf/Nc, and in the IR eφ → 0.
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In appendix C we propose an alternative interpretation of the IR regime of our field theory,

based on some nice observations made in [13] about the KW field theory. We argue that

the theory may flow to a strongly coupled fixed point, although the string frame curvature

invariant is large, as in the Klebanov-Witten solution for small values of gsNc.

Contrary to the IR limit, the UV regime of the theory is dominated by flavors and we

find the same kind of behavior for all values of the relevant deformations c1 and c2. The

gauge couplings increase with the energy, irrespective of the number of flavors. At a finite

energy scale that we conventionally fixed to ρ = 0, the gauge theory develops a Landau

pole, as told by the string coupling that diverges at that particular radius. This energy

scale is finite, because ρ = 0 is at finite proper distance from the bulk points ρ < 0.

At the Landau pole radius the supergravity description breaks down for many reasons:

the string coupling diverges as well as the curvature invariants (both in Einstein and string

frame), and the ψ circle shrinks. An UV completion must exist, and finding it is an

interesting problem. One could think to obtain a new description in terms of supergravity

plus branes through various dualities. In particular T-duality will map our solution to a

system of NS5, D4 and D6-branes, which could then be uplifted to M-theory. Anyway,

T-duality has to be applied with care because of the presence of D-branes on a non-trivial

background, and we actually do not know how to T-dualize the Dirac-Born-Infeld action.

We leave this interesting problem for the future.

3. Part II: generalizations

In this section we are going to extend the smearing procedure of the D7-brane, which was

formulated in section 2 for the particular case of the AdS5×T 1,1 space, to the more general

case of a geometry of the type AdS5×M5, where M5 is a five-dimensional compact manifold.

Of course, the requirement of supersymmetry restricts greatly the form of M5. Actually,

we will verify that, when M5 is Sasaki-Einstein, the formalism of section 2 can be easily

generalized. As a result of this generalization we will get a more intrinsic formulation of

the smearing, which eventually could be further generalized to other types of flavor branes

in different geometries.

Following the line of thought that led to the action (1.7), let us assume that, for a

general geometry, the effect of the smearing on the WZ term of the D7-brane action can

be modelled by means of the substitution:

SWZ = T7

∑

Nf

∫

M8

Ĉ8 → T7

∫

M10

Ω ∧ C8 , (3.1)

where Ω is a two-form which determines the distribution of the RR charge of the D7-brane

in the smearing and M10 is the full ten-dimensional manifold. For a supersymmetric brane

one expects the charge density to be equal to the mass density and, thus, the smearing

of the DBI part of the D7-brane action should be also determined by the form Ω. Let us

explain in detail how this can be done. First of all, let us suppose that Ω is decomposable,

i.e. that it can be written as the wedge product of two one-forms. In that case, at an

arbitrary point, Ω would determine an eight-dimensional orthogonal hyperplane, which
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we are going to identify with the tangent space of the D7-brane worldvolume. A general

two-form Ω will not be decomposable. However, it can be written as a finite sum of the

type:

Ω =
∑

i
Ω(i) , (3.2)

where each Ω(i) is decomposable. At an arbitrary point, each of the Ω(i)’s is dual to

an eight-dimensional hyperplane. Thus, Ω will determine locally a collection of eight-

dimensional hyperplanes. In the smearing procedure, to each decomposable component

of Ω we associate the volume form of its orthogonal complement in M10. Thus, the

contribution of every Ω(i) to the DBI action will be proportional to the ten-dimensional

volume element. Accordingly, let us perform the following substitution:

SDBI = −T7

∑

Nf

∫

M8

d8ξ

√
−Ĝ8 eφ → −T7

∫

M10

d10x
√
−G eφ

∑
i

∣∣Ω(i)
∣∣ , (3.3)

where
∣∣Ω(i)

∣∣ is the modulus of Ω(i) and represents the mass density of the ith piece of Ω in

the smearing. There is a natural definition of
∣∣Ω(i)

∣∣ which is invariant under coordinate

transformations. Indeed, let us suppose that Ω(i) is given by:

Ω(i) =
1

2!

∑

M,N

Ω
(i)
MN dxM ∧ dxN . (3.4)

Then,
∣∣ Ω(i)

∣∣ is defined as follows:

∣∣ Ω(i)
∣∣ ≡

√
1

2!
Ω

(i)
MN Ω

(i)
PQ GMP GNQ . (3.5)

Notice that Ω acts as a magnetic source for the field strength F1. Actually, from the

equation of motion of C8 one gets that Ω is just the violation of the Bianchi identity for

F1, namely:

dF1 = Ω . (3.6)

For a supersymmetric configuration the form Ω is not arbitrary. Indeed, eq. (3.6) de-

termines F1 which, in turn, enters the equation that determines the Killing spinors of the

background. On the other hand, Ω must come from the superposition (smearing) of κ-sym-

metric branes. When the manifold M5 is Sasaki-Einstein, we will show in section 3.2 that

Ω can be determined in terms of the Kähler form of the Kähler-Einstein base of M5 and

that the resulting DBI+WZ action is a direct generalization of the result written in (1.7).

We will also show that the existence of Killing spinors implies that the functions appearing

in the ansatz satisfy a system of first-order differential equations analogous to that written

in (2.20).

3.1 General smearing and DBI action

Here we will elaborate on the previous construction: writing the DBI action for a general

smearing of supersymmetric D7-branes. We mean that in general on an N = 1 background
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there is a continuous family of supersymmetric 4-manifolds15 that D7-branes can wrap cor-

responding to quarks with the same mass and quantum numbers. All these configurations

preserve the same four supercharges, so we can think of putting D7’s arbitrarily distributed

(with arbitrary density functions) on these manifolds. We want to write the DBI plus WZ

action for this system.

Supersymmetry plays a key role. The fact that we can put D7’s and not anti-D7’s

implies that the charge distribution completely specifies the system. For D7-branes the

charge distribution is a 2-form Ω, which can be localized (a “delta form” or current)

or smooth (for smeared systems). The Bianchi identity reads dF1 = Ω and is easily

implemented through the WZ action (3.1): SWZ = T7

∫
Ω ∧ C8. Notice that in this case

a well defined Ω not only must be closed (which is charge conservation) but also exact.

Supersymmetry also guides us in writing the DBI action, because the energy distribution

must be equal to the charge distribution. But there is a subtlety here, because the energy

distribution is not a 2-form, and some more careful analysis is needed.

Let us start considering the case of a single D7-brane localized on M8. We can write

its DBI action as a bulk 10d integral by introducing a localized distribution 2-form Ω such

that ∫

M8

d8ξ eφ

√
−Ĝ8 =

∫
d10x eφ

√
−G |Ω| . (3.7)

Ω is the Poincaré dual to M8. It can be (locally) written as Ω = δ(2)(M8)
√

−Ĝ8/
√
−Gα∧

β, through a properly normalized delta function and the product of two 1-forms (in general

not separately globally defined) orthogonal to the 8-submanifold.16 In particular it is

decomposable.

The decomposability of a 2-form can be established through Plücker’s relations, and

the minimum number of decomposable pieces needed to write a general 2-form is half of

its rank as a matrix.17 So the decomposability of a 2-form at a point means that it is

dual to one 8d hyperplane at that point; in general a 2-form is dual to a collection of 8d

hyperplanes.

If we do a parallel smearing of our D7-brane we get a smooth charge distribution 2-

form, non-zero at every point. This corresponds to put a lot of parallel D7’s and go to

the continuum limit. Being the smearing parallel, we never have intersections of branes

and the 2-form is still decomposable. As a result (3.7) is still valid. If instead we con-

struct a smeared system with intersection of branes, the charge distribution Ω is no longer

decomposable. Every decomposable piece corresponds to one 8d hyperplane, tangent to

one of the branes at the intersection. Since energy is additive, the DBI action is obtained

by summing the moduli of the decomposable pieces (and not just taking the modulus of

Ω). Every brane at the intersection defines its 8d hyperplane and gives its separate con-

15Even if we try to be general, we still stick to the case with vanishing B2 background and vanishing

FMN on the brane world-volume.
16This orthogonality does not need a metric. A 1-form is a linear function from the tangent space to R,

and its kernel is a 9d hyperplane. The 8d hyperplane, tangent to the submanifold, orthogonal to the two

1-forms, is the intersection of the two kernels.
17The rank of an antisymmetric matrix is always even.
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tribution to the DBI action and to the stress-energy tensor. We simply sum the separate

contributions because of supersymmetry: the D7’s do not interact among themselves due

to the cancellation of attractive/repulsive forces. Notice that in doing the smearing of bent

branes, one generically obtains unavoidable self-intersections.

Summarizing, given the splitting of the charge distribution 2-form into decomposable

pieces Ω =
∑

k Ω(k), the DBI action reads

SDBI = −T7

∫
d10x

√
−G eφ

∑
k

∣∣Ω(k)
∣∣ . (3.8)

The last step is to provide a well defined and coordinate invariant way of splitting the

charge distribution Ω in decomposable pieces. It turns out that the splitting in the minimal

number of pieces is almost unique. An antisymmetric matrix divides the tangent space

into invariant subspaces of even dimensions. There is a couple of imaginary eigenvalues

iλk,−iλk associated with each dimension 2 invariant subspace. Each decomposable piece

lives in one invariant subspace, and as long as the eigenvalues are different, the splitting

is unique. With invariant subspaces of dimension bigger than 2 there can be ambiguities,

but different splittings give the same DBI action. This concludes the argument.

We want to add some remarks on constraints posed by supersymmetry. For definiteness

let us take Ω on the internal 6d manifold, which in our setup is a complex SU(3)-structure

manifold. The internal geometry has an integrable complex structure I and a non-closed

Kähler form J compatible with the metric: Jab = gac I c
b . We can find a vielbein basis

that also diagonalizes the Kähler form:

J = êr ∧ ê0 + ê1 ∧ ê2 + ê3 ∧ ê4

g =
∑

a
êa ⊗ êa . (3.9)

This condition is invariant under the structure group SU(3) (without specifying the holo-

morphic 3-form, it is invariant under U(3)).

In our class of solutions, the supersymmetry equations force the charge distribution to

be of type (1,1) with respect to the complex structure (see [42]).18

The decomposable pieces live in the invariant spaces of the antisymmetric matrix

(Ω)ac gcb (the antisymmetry comes from Ω being of type (1,1) with respect to the complex

structure compatible with the metric), while the moduli
∣∣Ω(k)

∣∣ are equal to the absolute

values of the complex eigenvalues (which come in conjugated pairs) of the matrix:

(
Ω

)
ac

gcb −→
{(

Ω(k)
)
ac

gcb on invariant spaces
∣∣Ω(k)

∣∣ = |λ(k)| complex eigenvalues

Being practical, there is always a choice of vielbein basis which satisfies the diagonalizing

conditions (3.9) and in which the charge distribution can be written as the sum of three

(1,1) pieces:

Ω = λ1 êr ∧ ê0 + λ2 ê1 ∧ ê2 + λ3 ê3 ∧ ê4 . (3.10)

18In complex notation, we have eφF̄1 = i∂̄φ which implies ∂̄F̄1 = 0. Being the charge distribution

Ω = dF1, it must be (1,1).
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We repeat that this splitting is unique as long as the three eigenvalues λk are different,

while there are ambiguities for degenerate values but different choices give the same DBI

action.

3.2 The BPS equations for any Sasaki-Einstein space

Let us now explain in detail the origin of the system of first-order differential equa-

tions (2.20). As already explained in section 2, the system (2.20) is a consequence of

supersymmetry. Actually, it turns out that it can be derived in the more general situation

that corresponds to having smeared D7-branes in a space of the type AdS5 × M5, where

M5 is a five-dimensional Sasaki-Einstein (SE) manifold. Notice that the T 1,1 space con-

sidered up to now is a SE manifold. In general, a SE manifold can be represented as a

one-dimensional bundle over a four-dimensional Kähler-Einstein (KE) space. Accordingly,

we will write the M5 metric as follows

ds2
SE = ds2

KE + (dτ + A)2 , (3.11)

where ∂/∂τ is a Killing vector and ds2
KE stands for the metric of the KE space with Kähler

form J = dA/ 2. In the case of the T 1,1 manifold the KE base is just S2 × S2, where the

S2’s are parametrized by the angles (θi, ϕi) and the fiber τ is parametrized by the angle ψ.

Our ansatz for ten-dimensional metric in Einstein frame will correspond to a defor-

mation of the standard AdS5 × M5. Apart from the ordinary warp factor h(r), we will

introduce some squashing between the one form dual to the Killing vector and the KE

base, namely:

ds2 =
[
h(r)

]− 1

2

dx2
1,3 +

[
h(r)

] 1

2

[
dr2 + e2g(r) ds2

KE + e2f(r)
(
dτ + A)2

]
. (3.12)

Notice that, indeed, the ansatz (3.12) is of the same type as the one considered in eq. (1.10)

for the deformation of AdS5 × T 1,1. In addition our background must have a Ramond-

Ramond five form:

F5 = K(r) dx0 ∧ · · · dx4 ∧ dr + Hodge dual, (3.13)

and a Ramond-Ramond one-form F1 which violates Bianchi identity. Recall that this

violation, which we want to be compatible with supersymmetry, is a consequence of having

a smeared D7-brane source in our system. Our proposal for F1 is the following:

F1 = C (dτ + A) , (3.14)

where C is a constant which should be related to the number of flavors. Moreover, the

violation of the Bianchi identity is the following:19

dF1 = 2C J. (3.15)

19We are considering that J = 1

2
Jabdxa ∧ dxb and that the Ricci tensor of the KE space satisfies Rab =

6 gab.
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Notice that eq. (3.15) corresponds to taking Ω = 2CJ in our general expression (3.6). To

proceed with this proposal we should try to solve the Killing spinor equations by imposing

the appropriate projections. Notice that the ansatz is compatible with the Kähler structure

of the KE base and this is usually related to supersymmetry.

Before going ahead, it may be useful for the interested reader to make contact with

the explicit case studied in the previous section, namely the Klebanov-Witten model. In

that case the KE base is

ds2
KE =

1

6

∑

i=1,2

(dθ2
i + sin2 θi dϕ2

i ) (3.16)

whereas the one form dual to the Killing vector ∂/∂τ is dτ = dψ/3 and the form A reads

A =
1

3

(
cos θ1 dϕ1 + cos θ2 dϕ2

)
. (3.17)

Moreover, the constant C was set to
3 Nf

4π in that case.

Let us choose the following frame for the ten-dimensional metric:

êxµ
=

[
h(r)

]− 1

4 dxµ êr =
[
h(r)

] 1

4 dr ,

ê0 =
[
h(r)

] 1

4 ef(r)(dτ + A) êa =
[
h(r)

] 1

4 eg(r) ea,
(3.18)

where ea a = 1, . . . , 4 is the one-form basis for the KE space such that ds2
KE = ea ea. In

the Klebanov-Witten model the basis taken in (2.14) corresponds to:

e1 = sin θ1 dϕ1 , e2 = dθ1 ,

e3 = sin θ2 dϕ2 , e4 = dθ2 .
(3.19)

Let us write the five-form F5 = F5 + ∗F5 of eq. (3.13) in frame components:

F5 = K(r)
[
h(r)

] 3

4 êx0 ∧ · · · ∧ êx3 ∧ êr , (3.20)

∗F5 = −K(r)
[
h(r)

] 3

4 ê0 ∧ · · · ∧ ê4 = −Kh2 e4g+f (dτ + A) ∧ e1 ∧ · · · ∧ e4.

The equation dF5 = 0 immediately implies:

Kh2e4g+f = constant =
(2π)4Nc

V ol(M5)
, (3.21)

where the constant has been obtained by imposing the quantization condition (2.16) for

a generic M5. It will also be useful in what follows to write the one-form F1 in frame

components:

F1 = C h− 1

4 e−f ê0. (3.22)

Let us list the non-zero components of the spin connection:

ω̂xµr = −1

4
h′ h− 5

4 êxµ

, (µ = 0, · · · , 3) ,

ω̂ar =
[ 1

4

h′

h
+ g′

]
h− 1

4 êa , (a = 1, · · · , 4) ,

ω̂0r =
[ 1

4

h′

h
+ f ′

]
h− 1

4 ê0 ,

ω̂0
a = ef−2gh− 1

4 Jab êb ,

ω̂ab = ωab − ef−2gh− 1

4 Jabê0 , (3.23)
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where ωab are components of the spin connection of the KE base.

Let us now study under which conditions our ansatz preserves some amount of super-

symmetry. To address this point we must look at the supersymmetric variations of the

dilatino (λ) and gravitino (ψM ). These variations have been collected in appendix A, for

both the Einstein and string frame. We have written them in eq. (2.17) for the particular

case in which the three-forms of supergravity are zero. Recall that the variations written

in (2.17) correspond to the Einstein frame and we have used a complex spinor notation.

It is quite obvious from the form of our ansatz for F1 in (3.22) that the equation

resulting from the dilatino variation is:

(
φ′ + i eφ C e−f Γr0

)
ε = 0 . (3.24)

In eq. (3.24), and in what follows, the indices of the Γ-matrices refer to the vielbein com-

ponents (3.18).

Let us move on to the more interesting case of the gravitino transformation. The

space-time and the radial components of the equation do not depend on the structure of

the internal space and always yield the following two equations:

h′ + K h2 = 0 ,

∂rε − 1

8
K hε = 0 . (3.25)

To get eq. (3.25) we have imposed the D3-brane projection

Γx0x1x2x3 ε = −i ε , (3.26)

and we have used the fact that the ten-dimensional spinor is chiral with chirality

Γx0...x3r01234 ε = ε . (3.27)

It is a simple task to integrate the second differential equation in (3.25):

ε = h− 1

8 ε̂ , (3.28)

where ε̂ is a spinor which can only depend on the coordinates of the Sasaki-Einstein space.

In order to study the variation of the SE components of the gravitino it is useful to

write the covariant derivative along the SE directions in terms of the covariant derivative

in the KE space. The covariant derivative, written as a one-form for those components,

D̂ ≡ d + 1
4 ω̂IJ ΓIJ , is given by

D̂ = D − 1

4
Jab h− 1

4 ef−2g Γab ê0 − 1

2
Jab h− 1

4 ef−2g Γ0b êa +

+
1

2
h− 1

4

(1

4

h′

h
+ g′

)
Γar êa +

1

2
h− 1

4

(1

4

h′

h
+ f ′

)
Γ0r ê0 , (3.29)

where D is the covariant derivative in the internal KE space.

The equation for the SE components of the gravitino transformation is

D̂I ε − 1

8
K h

3

4 ΓrI ε +
i

4
eφ F

(1)
I ε = 0. (3.30)
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This equation can be split into a part coming from the coordinates in the KE space and a

part coming from the coordinate which parameterizes the Killing vector. For this purpose,

it is convenient to represent the frame one-forms ea and the fiber one-form A in a coordinate

basis of the KE space

ea = Ea
m dym ,

A = Am dym , (3.31)

with ym m = 1, . . . , 4 a set of space coordinates in the KE space.

After a bit of algebra one can see that the equation obtained for the space coordinates

ym is simply

Dm ε − 1

4
Jab e2(f−g) Am Γab ε − 1

2
Jab h− 1

4 ef−2g Ea
m Γ0b ε+

+
1

2
h− 1

4

(
1

4

h′

h
+ g′

)
Ea

m Γar ε +
1

2

(
1

4

h′

h
+ f ′

)
ef Am Γ0r ε−

− 1

8
K h

3

4

(
Ea

m Γra + h
1

4 ef Am Γr0
)
ε +

i

4
eφ C Am ε = 0 , (3.32)

whereas the equation obtained for the fiber coordinate τ is given by

∂ε

∂τ
− 1

4
Jab e2(f−g) Γab ε +

1

2

(
1

4

h′

h
+ f ′

)
ef Γ0r ε−

− 1

8
K hef Γr0 ε +

i

4
eφ C ε = 0 . (3.33)

Let us now solve these equations for the spinor ε. First of all, let us consider the dilatino

equation (3.24). Clearly, this equation implies that the spinor must be an eigenvector of

the matrix Γr0. Accordingly, let us require that ε satisfies

Γr0 ε = − i ε . (3.34)

Moreover, a glance at eqs. (3.32) and (3.33) reveals that ε must also be an eigenvector of

the matrix JabΓ
ab. Actually, by combining eqs. (3.26) , (3.27) and (3.34) one easily obtains

that

Γ12ε = Γ34ε . (3.35)

To simplify matters, let us assume that we have chosen the one-form basis ea of the KE in

such a way that the Kähler two-form J takes the canonical form:

J = e1 ∧ e2 + e3 ∧ e4 . (3.36)

In this basis, after using the condition (3.35), one trivially gets:

JabΓ
ab ε = 4Γ12 ε . (3.37)

Thus, in order to diagonalize JabΓ
ab, let us impose the projection

Γ12 ε = −iε , (3.38)
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which implies

Γ34 ε = −iε , JabΓ
ab ε = −4iε . (3.39)

Let us now use the well-known fact that any KE space admits a covariantly constant

spinor η satisfying:

Dm η = −3

2
iAm η , (3.40)

from which one can get a Killing spinor of the five-dimensional SE space as:

ε̂ = e−i 3

2
τ η . (3.41)

Actually, in the KE frame basis we are using, η turns out to be a constant spinor which

satisfies the conditions Γ12 η = Γ34 η = iη. Let us now insert the SE Killing spinor ε̂ of

eq. (3.41) in our ansatz (3.28), i.e. we take the solution of our SUSY equations to be:

ε = h− 1

8 e−
3

2
iτ η . (3.42)

By plugging (3.42) into eqs. (3.32) and (3.33), and using the projections imposed to ε

and (3.40), one can easily see that eqs. (3.32) and (3.33) reduce to the following two

differential equations:

1

4

h′

h
+ g′ +

1

4
K h − ef−2g = 0 ,

1

4

h′

h
+ f ′ +

1

4
K h + 2 ef−2g − 3 e−f +

C

2
eφ−f = 0 . (3.43)

By combining all equations obtained so far in this section we arrive at a system of first-order

BPS equations for the deformation of any space of the form AdS5 × M5:

φ′ − C eφ−f = 0 ,

h′ +
(2π)4Nc

V ol(M5)
e−f−4g = 0 ,

g′ − ef−2g = 0 ,

f ′ + 2 ef−2g − 3 e−f +
C

2
eφ−f = 0 . (3.44)

Notice that, indeed, this system reduces to the one written in eq. (2.20) for the conifold, if

we take into account that for this later case the constant C is 3Nf/(4π) and V ol(T 1,1) =

16π3/27.

It is now a simple task to count the supersymmetries of the type (3.42) preserved by our

background: it is just thirty-two divided by the number of independent algebraic projection

imposed to the constant spinor η. As a set of independent projections one can take the ones

written in eqs. (3.26), (3.34) and (3.38). It follows that our deformed background preserves

four supersymmetries generated by Killing spinors of the type displayed in eq. (3.42).
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3.3 The BPS and Einstein equations

In this section we will prove that the BPS system implies the fulfilment of the second-order

Euler-Lagrange equations of motion for the combined gravity plus brane system. To begin

with, let us consider the equation of motion of the dilaton, which can be written as:

1√
−G

∂M

(
GMN

√
−G ∂Nφ

)
= e2φ F 2

1 − 2κ2
10√
−G

δ

δφ
SDBI , (3.45)

where GMN is the ten-dimensional metric. Using the DBI action (3.3) for the smeared

D7-branes configuration, we find:

− 2κ2
10√
−G

δ

δφ
SDBI = eφ

∑
i

∣∣Ω(i)
∣∣ . (3.46)

The charge density distribution is Ω = 2CJ (see eq. (3.15)). Recall that the Kähler form

J of the KE base manifold has the canonical expression (3.36). It follows that Ω has two

decomposable components given by:

Ω(1) = 2C e1 ∧ e2 = 2C h− 1

2 e−2g ê1 ∧ ê2 ,

Ω(2) = 2C e3 ∧ e4 = 2C h− 1

2 e−2g ê3 ∧ ê4 , (3.47)

where the êa one-forms have been defined in (3.18). Therefore, the moduli of the Ω(i)’s can

be straightforwardly computed:

∣∣Ω(1)
∣∣ =

∣∣Ω(2)
∣∣ = 2|C |h− 1

2 e−2g . (3.48)

By using the explicit form of the metric, our ansatz for F1 and the previous formulae (3.48)

one can convert eq. (3.45) into the following:

φ′′ + (4g′ + f ′)φ′ = C2 e2φ−2f + 4 |C| eφ−2g . (3.49)

It is now a simple exercise to verify that eq. (3.49) holds if the functions φ, g and f solve

the first-order BPS system (3.44) and the constant C is non-negative. In what follows we

shall assume that C ≥ 0.

To check the Einstein equation we need to calculate the Ricci tensor. In flat coordinates

the components of the Ricci tensor can be computed by using the spin connection. The

expression of the curvature two-form in terms of the spin connection is

RM̂N̂ = dω̂M̂N̂ + ω̂M̂P̂ ∧ ω̂P̂
N̂

, (3.50)

with the curvature two-form defined as follows:

RM̂
N̂

=
1

2
RM̂

N̂P̂ Q̂
eP̂ ∧ eQ̂ . (3.51)

By using the values of the different components of the ten-dimensional spin connection

written in (3.23) we can easily obtain the Riemann tensor and, by simple contraction of
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indices, we arrive at the following flat components of the Ricci tensor:

Rxixj = h− 1

2 ηxixj

(
1

4

h′′

h
− 1

4

(
h′

h

)2

+
1

4

h′

h
f ′ +

h′

h
g′

)
,

Rrr = h− 1

2

(
− 1

4

h′′

h
− 1

4

(
h′

h

)2

− 1

4

h′

h
f ′ − h′

h
g′ − f ′′ − (f ′)2 − 4g′′

)
,

R00 = h− 1

2

(
− 1

4

h′′

h
+

1

4

(
h′

h

)2

− 1

4

h′

h
f ′ − h′

h
g′ − f ′′ − (f ′)2 − 4g′f ′ + 4e2f−4g

)
,

Raa = h− 1

2

(
− 1

4

h′′

h
+

1

4

(
h′

h

)2

− 1

4

h′

h
f ′ − h′

h
g′ − g′′ −

−4(g′)2 − g′f ′ − 2e2f−4g + 6e−2g

)
,

RM̂N̂ = 0, M 6= N. (3.52)

From these values it is straightforward to find the expression of the scalar curvature, which

is simply

R = −h− 1

2

(
1

2

h′′

h
+

1

2

h′

h
f ′ + 2

h′

h
g′ + 8 g′′ + 20 (g′)2 +

+8 g′ f ′ + 2 f ′′ + 2 (f ′)2 + 4 e2f−4g − 24 e−2g

)
. (3.53)

Let us evaluate the different contributions to the right-hand side of Einstein’s equations.

The contributions from the five- and one-forms have been written in the first equation

in (1.8) and is immediately computable from our ansatz of eqs. (3.13) and (3.14). On the

other hand, the contribution of the DBI part of the action is just

TMN = − 2κ2
10√
−G

δSDBI

δGMN
. (3.54)

By using our expression (3.3) of SDBI, with Ω = dF1, together with the definition (3.5),

one easily arrives at the following expression of the stress-energy tensor of the D7-brane:

TM̂N̂ = −eφ

2

[
ηM̂N̂

∑

i

∣∣ dF
(i)
1

∣∣ −
∑

i

1
∣∣ dF

(i)
1

∣∣ (dF
(i)
1 )M̂P̂ (dF

(i)
1 )N̂Q̂ ηP̂ Q̂

]
, (3.55)

where we have used that 2κ2
10T7 = 1 and we have written the result in flat components.

By using in (3.55) the values given in eqs. (3.47) and (3.48) of dF
(i)
1 and its modulus, we

arrive at the simple result:

Txixj = −2C h− 1

2 eφ−2g ηxixj ,

Trr = T00 = −2C h− 1

2 eφ−2g ,

Tab = −C h− 1

2 eφ−2g δab , (a, b = 1, · · · , 4) , (3.56)
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where the indices refer to our vielbein basis (3.18). As a check of this result one can

explicitly verify that the result of eq. (2.27) for the conifold, when written in flat indices,

reduces to the simple expressions written in (3.56).

With all this information we can write, component by component, the set of second

order differential equations for h, f and φ that are equivalent to the Einstein equations.

One can then verify, after some calculation, that these equations are satisfied if φ and the

functions of our ansatz solve the first-order system (3.44). Therefore, we have succeeded in

proving that the background obtained from the supersymmetry analysis is a solution of the

equations of motion of the supergravity plus Born-Infeld system. Notice that the SUSY

analysis determines F1, i.e. the RR charge distribution of the smeared D7-branes. What

we have just proved is that eq. (3.55) gives the correct energy-momentum distribution

associated to the charge distribution Ω = dF1 of the smeared flavor brane.

To finish this section let us write the DBI action in a different, and very suggestive,

fashion. It turns out that, for our ansatz, the on-shell DBI action can be written as the

integral of a ten-form and the corresponding expression is very similar to the one for the

WZ term (eq. (3.1)). Actually, we show below that

SDBI = −T7

∫

M10

eφ dF1 ∧ Ω8 , (3.57)

where Ω8 is an eight-form which, after performing the wedge product with the smearing

two-form dF1, gives rise to a volume form of the ten-dimensional space. Let us factorize in

Ω8 the factors coming from the Minkowski directions:

Ω8 = h−1 d4x ∧ Ω4 , (3.58)

where Ω4 is a four-form in the internal space. Actually, one can check that Ω4 can be

written as:

Ω4 =
1

2
J ∧ J , (3.59)

where J is the following two-form:

J = h
1

2 e2g J + h
1

2 ef dr ∧ (dτ + A) . (3.60)

To verify this fact, let us recall that dF1 = 2CJ and thus

dF1 ∧ Ω8 = C h−1 d4x ∧ J ∧ J ∧ J . (3.61)

Taking into account that 1
2 J ∧ J is the volume form of the KE base of M5, we readily get:

d4x ∧ J ∧ J ∧ J = 4e−2g h
1

2

√
−G d10x , (3.62)

from where one can easily prove that eq. (3.57) gives the same result as in equation (3.3)

with Ω = dF1.
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3.4 A superpotential and the BPS equations

It is interesting to obtain the system of first-order BPS equations (3.44) by using an al-

ternative approach, namely by deriving them from a superpotential. Generically, let us

consider a one-dimensional classical mechanics system in which η is the “time” variable

and A(η), Φm(η) (m = 1, 2 . . .) are the generalized coordinates. Let us assume that the

Lagrangian of this system takes the form:

L = eA
[
κ (∂ηA)2 − 1

2
Gmn(Φ) ∂ηΦ

m ∂ηΦ
n − V (Φ)

]
, (3.63)

where κ is a constant and V (Φ) is some potential, which we assume that is independent of

the coordinate A. If one can find a superpotential W such that:

V (Φ) =
1

2
Gmn ∂W

∂Φm

∂W

∂Φn
− 1

4κ
W 2 , (3.64)

then the equations of motion are automatically satisfied by the solutions of the first order

system:
dA
dη

= − 1

2κ
W ,

dΦm

dη
= Gmn ∂W

∂Φn
. (3.65)

Let us now show how we can recover our system (3.44) from this formalism. The first

step is to look for an effective Lagrangian for the dilaton and the functions of our ansatz

whose equations of motion are the same as those obtained from the Einstein and dilaton

equations of Type IIB supergravity. One can see that this lagrangian is:

Leff = h
1

2 e4g+f
[
R− 1

2
h− 1

2 (φ′)2− Q2

2
h− 5

2 e−8g−2f − C2

2
h− 1

2 e2φ−2f −4Ch− 1

2 eφ−2g
]

, (3.66)

where R is the scalar curvature as written in (3.53) and Q is the constant

Q ≡ (2π)4Nc

V ol(M5)
. (3.67)

The Ricci scalar (3.53) contains second derivatives. Up to total derivatives Leff takes the

form:

Leff = e4g+f

[
− 1

2

(
h′

h

)2

+ 12 (g′)2 + 8 g′ f ′ − 4 e2f−4g + 24 e−2g − 1

2
(φ′)2 −

−Q2

2
h−2 e−8g−2f − C2

2
e2(φ−f) − 4C eφ−2g

]
. (3.68)

We want to pass from the lagrangian (3.68) to that in eq. (3.63). With that purpose in

mind let us perform the following redefinition of fields:

e
3

4
A = h

1

2 e4g+f , e2g̃ = h
1

2 e2g, e2f̃ = h
1

2 e2f . (3.69)

In addition, we need to do the following change of the radial variable 20

dr

dη
= e

A

4
− 8

3
g̃ − 2

3
f̃ . (3.70)

20The change of the Lagrangian under that change of radial variable is L̂eff = dr
dη

Leff .
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Once we have done the previous redefinitions, the Lagrangian we obtain is:

L̂eff = eA

[
3

4
(Ȧ)2 − 28

3
( ˙̃g)2 − 4

3
(

˙̃
f)2 − 8

3
˙̃g

˙̃
f − 1

2
(φ̇)2 − V (g̃, f̃ , φ)

]
, (3.71)

where the dot means derivative with respect to η and V (g̃, f̃ , φ) is the following potential:

V (g̃, f̃ , φ) = e−
2

3
(4g̃+f̃)

(
4e2f̃−4g̃ −24e−2g̃ +

Q2

2
e−2(4g̃+f̃) +

C2

2
e2(φ−f̃ ) +4Ceφ−2g̃

)
. (3.72)

The above lagrangian has the desired form (see eq. (3.63)) and we can identify the constant

κ and the elements of the kinetic matrix Gmn as:

κ =
3

4
, Gg̃g̃ =

56

3
, Gf̃ f̃ =

8

3
, Gg̃f̃ =

8

3
, Gφφ = 1 . (3.73)

One can now check that, given the above expression of the potential, the following super-

potential

W = e−
1

3
(4g̃+f̃)

[
Qe−4g̃−f̃ − 4 ef̃−2g̃ − 6e−f̃ + Ceφ−f̃

]
(3.74)

satisfies eq. (3.64) for the values of κ and Gmn written in eq. (3.73). It is now immediate

to write the first-order differential equations that stem from this superpotential. Explicitly

we obtain:

Ȧ = − 2

3
W ,

˙̃g =
1

4
e−

1

3
(4g̃+f̃)

[
− Qe−4g̃−f̃ + 4 ef̃−2g̃

]
,

˙̃f =
1

4
e−

1

3
(4g̃+f̃)

[
− Qe−4g̃−f̃ − 8 ef̃−2g̃ + 12 e−f̃ − 2C eφ−f̃

]
,

φ̇ = C eφ− 4

3
(g̃+f̃) . (3.75)

In order to verify that this system is equivalent to the one obtained from supersymmetry, let

us write down explicitly these equations in terms of the old radial variable (see eq. (3.70))

and fields (see eqs. (3.69)). One gets:

h′

h
+ 8 g′ + 2 f ′ = −Qh−1 e−4g−f + 4 ef−2g + 6e−f − Ceφ−f ,

1

4

h′

h
+ g′ = ef−2g − 1

4
Qh−1 e−4g−f ,

1

4

h′

h
+ f ′ = 3 e−f − 2 ef−2g − 1

4
Qh−1 e−4g−f − 1

2
C eφ−f ,

φ′ = C eφ−f , (3.76)

which are nothing else than a combination of the system of BPS equations written in (3.44).

Let us now use the previous results to study the 5d effective action resulting from

the compactification along M5 of our solution. The fields in this effective action are the

functions f̃ and g̃, which parameterize the deformations along the fiber and the KE base of
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M5 respectively, and the dilaton. Actually, in terms of the new radial variable η introduced

in (3.70), the ten-dimensional metric can be written as:

ds2 = e−
2

3
( f̃ + 4 g̃ )

[
e

A

2 dxµdxµ + dη2
]

+ e2g̃ ds2
KE + e2f̃ (dτ + A)2 . (3.77)

The corresponding analysis for the unflavored theory was performed in [8, 35]. For sim-

plicity, let us work in units in which the AdS5 radius L is one. Notice that the quantity Q

defined in (3.67) is just Q = 4L4. Thus, in these units Q = 4. To make contact with the

analysis of refs. [8, 35], let us introduce new fields q and p which, in terms of f̃ and g̃ are

defined as follows:21

q =
2

15
( f̃ + 4 g̃ ) , p = − 1

5
( f̃ − g̃ ) . (3.78)

In terms of these new fields, the potential (3.72) turns out to be

V (p, q, φ) = 4 e−8q−12p − 24 e−8q−2p +
C2

2
e2φ−8q+8p + 8 e−20q̂ + 4C eφ−8q+8p , (3.79)

and the effective lagrangian (3.71) can be written as:

Leff =
√−g5

[
R5 − 1

2
φ̇2 − 20 ṗ2 − 30 q̇2 − V

]
, (3.80)

where g5 = −e2A is the determinant of the five-dimensional metric ds2
5 = e

A

2 dxµdxµ + dη2

and R5 = −[2 Ä + 5
4 Ȧ2

]
is its Ricci scalar. One can check that the minimum of the

potential (3.79) occurs only at p = q = eφ = 0, which corresponds to the conformal

AdS5 × M5 geometry. Moreover, by expanding V around this minimum at second order

we find out that the fields p and q defined in (3.78) diagonalize the quadratic potential.

The corresponding masses are m2
p = 12 and m2

q = 32. By using these values in the mass-

dimension relation (2.86), we get:

m2
p = 12 =⇒ ∆p = 6 ,

m2
q = 32 =⇒ ∆p = 8 . (3.81)

These scalar modes p and q are dual to the dimension 6 and 8 operators discussed in

section 2.

3.5 General deformation of the Klebanov-Witten background

In this section we will explore the possibility of having a more general flavor deformation

of the AdS5 × T 1,1 background. Notice that, as T 1,1 is a U(1) bundle over S2 × S2, there

exists the possibility of squashing with different functions each of the two S2’s of the KE

base. In the unflavored case this is precisely the type of deformation that occurs when

the singular conifold is substituted by its small resolution. For this reason, it is worth to

21The function p is called f in refs. [8, 35].

– 43 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
0

consider this type of metric also in our flavored background. To be precise, let us adopt

the following ansatz for the metric, five-form and one-form:

ds2 = h−1/2dx2
1,3 + h1/2

{
dr2 +

1

6

∑

i=1,2

e2gi(dθ2
i + sin2 θi dϕ2

i ) +

+
e2f

9

(
dψ +

∑

i=1,2

cos θi dϕi

)2}
,

F5 = (1 + ∗) d4x ∧ K dr ,

F1 =
C

3
(dψ + cos θ2 dϕ2 + cos θ1 dϕ1) , (3.82)

where C = 3Nf/4π, all functions depend on r and g1(r) and g2(r) are, in general, different

(if g1 = g2 = g we recover our ansatz (1.10)). The equation dF5 = 0 immediately implies:

Kh2e2g1+2g2+f = 27πNc ≡ Q , (3.83)

which allows to eliminate the function K in favor of the other functions of the ansatz.

By following the same steps as in the g1 = g2 case and requiring that the background

preserve four supersymmetries, we get a system of first-order BPS equations for this kind

of deformation, namely:

∂rφ = C eφ−f ,

h′ = −Qe−f−2g1−2g2 ,

g′i = ef−2gi , (i = 1, 2) ,

f ′ = 3 e−f − ef−2g1 − ef−2g2 − C

2
eφ−f . (3.84)

Notice that, as it should, the system (3.84) reduces to eq. (3.44) when g1 = g2.

It is not difficult to integrate this system of differential equations by following the

same method that was employed for the g1 = g2 case. First of all, we change the radial

coordinate:

dr = ef dρ , (3.85)

what allows us to get a new system:

φ̇ = C eφ ,

ḣ = −Qe−2g1−2g2 ,

ġi = e2f−2gi , (i = 1, 2) ,

ḟ = 3 − e2f−2g1 − e2f−2g2 − C

2
eφ , (3.86)

where now the derivatives are taken with respect to the new variable ρ.

The equation for the dilaton in (3.86) can be integrated immediately, with the result:

eφ = − 1

C

1

ρ
, (ρ < 0) , (3.87)
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where we have absorbed an integration constant in a shift of the radial coordinate. More-

over, by combining the equations for g1 and g2 one easily realizes that the combination

e2g1 − e2g2 is constant. Let us write:

e2g1 = e2g2 + a2 . (3.88)

On the other hand, by using the solution for φ(r) just found and the equations for the gi’s

in (3.86), the first-order equation for f can be rewritten as:

ḟ = 3 − ġ1 − ġ2 +
1

2ρ
, (3.89)

which can be integrated immediately, to give:

e2f+2g1+2g2 = −cρe6ρ , (3.90)

with c being an integration constant. This constant can be absorbed by performing a

suitable redefinition. In order to make contact with the case in which g1 = g2 let us take

c = 6. Then, by combining (3.90) with the equation of g2, we get

e4g2+2g1 ġ2 = e2g1+2g2+2f = −6ρe6ρ , (3.91)

which, after using the relation (3.88), can be integrated with the result

e6g2 +
3

2
a2 e4g2 = (1 − 6ρ) e6ρ + c1 . (3.92)

Notice that, indeed, for a = 0 this equation reduces to the g1 = g2 solution (see eq. (2.43)).

Moreover, by combining eqs. (3.88) and (3.90) the expression of f can be straightforwardly

written in terms of g2, as follows:

e2f = − 6ρe6ρ

e4g2 + a2 e2g2
. (3.93)

It is also easy to get the expression of the warp factor h:

h(ρ) = −Q

∫
dρ

e4g2 + a2 e2g2
+ c2 . (3.94)

Thus, the full solution is determined in terms of e2g2 which, in turn, can be obtained

from (3.92) by solving a cubic algebraic equation. In order to write the explicit value of

e2g2 , let us define the function:

ξ(ρ) ≡ (1 − 6ρ) e6ρ + c1 . (3.95)

Then, one has:

e2g2 =
1

2

[
− a2 +

a4

[
ζ(ρ)

] 1

3

+
[
ζ(ρ)

] 1

3

]
, (3.96)
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where the function ζ(ρ) is defined in terms of ξ(ρ) as:

ζ(ρ) ≡ 4 ξ(ρ) − a6 + 4

√
ξ(ρ)2 − a6

2
ξ(ρ) . (3.97)

In expanding these functions in series near the UV (ρ → 0) one gets a similar behavior to

the one discussed in section 2.3. Very interestingly, in the IR of the field theory, that is

when ρ → −∞, we get a behavior that is “softened” respect to what we found in section 2.3.

This is not unexpected, given the deformation parameter a. Nevertheless, the solutions are

still singular. Indeed, the dilaton was not affected by the deformation a.

3.6 Massive flavors

In the ansatz we have been using up to now we have assumed that the density of RR charge

of the D7-branes is independent of the holographic coordinate. This is, of course, what is

expected for a flavor brane configuration which corresponds to massless quarks. On the

contrary, in the massive quark case, a supersymmetric D7-brane has a non-trivial profile

in the radial direction [20] and, in particular ends at some non-zero value of the radial

coordinate. These massive embeddings have free parameters which could be used to smear

the D7-branes. It is natural to think that the corresponding charge and mass distribution

of the smeared flavor branes will depend on the radial coordinate in a non-trivial way.

It turns out that there is a simple modification of our ansatz for F1 which gives rise

to a charge and mass distribution with the characteristics required to represent smeared

flavor branes with massive quarks. Indeed, let us simply substitute in (3.44) the constant

C by a function C(r). In this case:

F1 = C(r) (dτ + A) ,

dF1 = 2C(r)J + C ′(r)dr ∧ (dτ + A) . (3.98)

Notice that the SUSY analysis of section 3.2 remains unchanged since only F1, and not

its derivative, appears in the supersymmetric variations of the dilatino and gravitino. The

final result is just the same system (3.44) of first-order BPS equations, where now one has

to understand that C is a prescribed function of r, which encodes the non-trivial profile

of the D7-brane. Notice that C(r) determines the running of the dilaton which, in turn,

affects the other functions of the ansatz.

A natural question to address here is whether or not the solutions of the modified BPS

system solve the equations of motion of the supergravity plus branes system. In order to

check this fact, let us write the DBI term of the action, following our prescription (3.3).

Notice that, in the present case, Ω = dF1 is the sum of three decomposable pieces:

dF1 = dF
(1)
1 + dF

(2)
1 + dF

(3)
1 , (3.99)

where dF
(1)
1 and dF

(2)
1 are just the same as in eq. (3.47), while dF

(3)
1 is given by:

dF
(3)
1 = C ′(r) dr ∧ (dτ + A) = h− 1

2 e−f C ′(r) er ∧ e0 . (3.100)
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The modulus of this new piece of dF1 can be straightforwardly computed, namely:

| dF
(3)
1 | = h− 1

2 e−f |C ′(r) | . (3.101)

By using this result, together with the one in (3.48), one readily gets the expression of the

DBI terms of the action of the smeared D7-branes:

SDBI = −T7

∫

M10

h− 1

2 eφ
(
4 |C(r) | e−2g + |C ′(r) | e−f

)√
−G d10x . (3.102)

From this action it is immediate to find the equation of motion of the dilaton, i.e.:

φ′′ + (4g′ + f ′)φ′ = C2 e2φ−2f + 4 |C| eφ−2g + eφ−f |C ′ | . (3.103)

It can be verified that the first-oder BPS equations (3.44) imply the fulfilment of eq. (3.103),

provided the functions C(r) and C ′(r) are non-negative. Notice that now, when comput-

ing the second derivative of φ from the BPS system (3.44) with C = C(r), a new term

containing C ′(r) is generated. It is easy to verify that this new term matches precisely the

last term on the right-hand side of (3.103).

It remains to verify the fulfilment of Einstein’s equation. The stress-energy tensor of

the brane can be computed from eq. (3.55), where now the extra decomposable piece of

dF1 must be taken into account. The result one arrives at, in the vielbein basis (3.18), is

a direct generalization of (3.56):

Txixj = − eφ h− 1

2

[
2 |C(r) | e−2g +

1

2
|C ′(r) | e−f

]
ηxixj , (i, j = 0, . . . , 3) ,

Tab = − eφ h− 1

2

[
|C(r) | e−2g +

1

2
|C ′(r) | e−f

]
δab , (a, b = 1, . . . , 4) ,

Trr = T00 = − 2 |C(r) | h− 1

2 eφ−2g . (3.104)

As happened for the equation of motion of the dilaton, one can verify that the extra pieces

on the right-hand side of (3.104) match precisely those generated by the second derivatives

appearing in the expression (3.52) of the Ricci tensor if C(r) and C ′(r) are non-negative.

As a consequence, the first-order equations (3.44) with a function C(r) also imply the

equations of motion for the ten-dimensional metric gMN . It is also interesting to point out

that, if C(r) and C ′(r) are non-negative, SDBI can also be written in the form (3.57), where

Ω8 is exactly the same eight-form as in eqs. (3.58) and (3.59).

Notice that, if the function C(r) = 3Nf (r)/4π has a Heaviside-like shape “starting” at

some finite value of the radial coordinate, then our BPS equations and solutions will be the

ones given in section 2.3 for values of the radial coordinate bigger than the “mass of the

flavor”. However, below that radial value the solution will be the one of Klebanov-Witten

(or deformations of it, see appendix B), with a non-running dilaton. Aside from decoupling

in the field theory, this is clearly indicating that the addition of massive flavors “resolves”

the singularity. Physically this behavior is expected and makes these massive flavor more

interesting.
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4. Summary, future prospects and further discussion

In this paper we followed the method of [17] to construct a dual to the field theory defined

by the Klebanov and Witten after Nf flavors of quarks and antiquarks have been added

to both gauge groups. In section 2 of this work, we wrote BPS equations describing the

dynamics of this system and found solutions to this first order system, that of course solves

also all the second order equations of motion. We analyzed the solutions to the BPS system

and learnt that, even when singular, the character of the singularity permits to get field

theory conclusions from the supergravity perspective.

We proposed a formulation for the dual field theory to these solutions, constructing a

precise 4-dimensional superpotential. We studied these solutions making many matchings

with field theory expectations that included the R-symmetry breaking and Wilsonian beta

function. Also, using the well known (supergravity) superpotential approach, we learnt

that our field theory, aside from being deformed by a marginal (then turned irrelevant)

operator, modifies its dynamics by giving VEV to operators of dimension six and eight.

We explained how to change relations between couplings and θ-angles in the theory, from

the perspective of our solutions. We believe that these many checks should encourage other

physicists to study this background more closely.

In section 3 of this paper, we presented a careful account of the many technical details

regarding the derivation of the results in section 2 summarized above. But most interest-

ingly, section 3 is not only about technical details. Indeed, using the logic and intuitions

developed in section 2, we generalized the approach described there for any five dimen-

sional manifold that can be written as a Sasaki-Einstein space (a one-dimensional fibration

over a Kähler-Einstein space). It is surprising that the same structure of BPS eqs and

ten-dimensional superpotential repeats for all the manifolds described above. This clearly

points to some “universality” of the behavior of 4-dimensional N = 1 SCFT’s with flavors.

We have added some brief comments about what happens when we take the number of

flavors Nf = 0 in our BPS eqs (see appendix B). It is interesting to recover some solutions

studied in the past from this perspective since it puts into context previous analysis. Again,

the careful study of this “unflavored” solutions might be of interest to many physicists.

We shortly commented on the possibility of adding to the dynamics of the 4-d field theory

fundamentals with mass, presenting a general context to do this. We will exploit this

procedure in the future to get a better understanding of our singular backgrounds, make

contact with field theory results and study many other interesting problems.

All the results described above not only motivate a more detailed analysis of this

approach from a field theoretical viewpoint, but also emphasize the need for a deeper

geometrical study, that clearly will reveal interesting underlying structure.

4.1 Future directions

Many things can be done following the results of this paper. It is natural to extend the

treatment to the case of the Klebanov-Tseytlin and Klebanov-Strassler solutions. The

result is likely to be interesting, since the fundamentals and the KT cascade “push in
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different directions” in the RG flow. One might find a fine-tuned situation in which the IR

dynamics is different from the one in the Klebanov-Strassler model.

Other things that immediately come to mind are to study the dynamics of moving

strings in this backgrounds, details related to dibaryons, flavor symmetry breaking, etc.

Even when technically involved, it should be nice to understand the backreaction of probes

where the worldvolume fields have been turned on, since some interesting problems may

be addressed.

The formalism developed to deal with configurations of IIB dual to massive funda-

mentals seems useful in different contexts. Needless to say, the approach adopted here

is immediately generalizable to the case of type IIA backgrounds. Duals to N = 1 field

theories have been constructed and it seems natural to apply our methods in those cases.

Finding black hole solutions in our geometries is not an elementary task; but it should

not be very difficult. The interest of this problem resides in the fact that this will produce

a “well-defined” black hole background where to study, among other things, plasmas that

include the dynamics of color and flavor at strong coupling. This is a very well defined

problem that we believe of much interest.

On the field theory side, it should be interesting to understand in more detail how

the smearing procedure affects the superpotential. We gave a possible answer and detailed

study can uncover interesting subtleties. Here again, similar ideas can be extended to

other situations in type IIA and type IIB. Getting a better handle on the field theory

interpretation of our “generalized” approach of Part II seems also interesting. Indeed,

understanding in detail what is the “universality” that produces the same dynamics for a

large class of N = 1 SCFT’s with flavor would be nice.

4.2 Further discussion

Let us finish this paper with some discussions that might be of interest for the reader.

The first point we want to address is what could be the application of these results to

Physics. Indeed, it is not easy to find an interesting physical system displaying a Landau

pole (without a UV completion, like QED has, for example). Of course, as explained above,

this paper is a first step in a more detailed study of a cascading field theory with flavors,

that with no doubt has applications in Physics. Nevertheless, one can find some interesting

problems already at this stage.

As described above, finding a black hole in our geometry, might be a good simulation of

the Physics of a strongly coupled quark-gluon plasma. Even more, since we would be only

interested in effects in the hydrodynamics regime, using the IR of this black hole solutions

should be enough to learn about Physics at RHIC, for example. One can also think that

our paper starts the study of the different phases of this generalized N = 1 SQCD obtained

from Klebanov-Witten-like models.

Let us change the subject of the discussion and go back to our procedure, that was

well explained in the introduction of this paper. The reader may remember the difference

between a weakly gauged symmetry and a global symmetry, let us now connect this to

supergravity. One important distinction between the approaches for finding string duals

to field theories with fundamentals is that in the approach where the solution consists
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only of supergravity fields, the field theory will have this global symmetry weakly gauged.

On the contrary, in our case backreacting with the Born-Infeld action, the symmetry will

be global. We can see this clearly in the fact that the BI action has the freedom to add

worldvolume gauge fields (and scalars), hence introducing a gauged symmetry in the bulk,

dual to a global symmetry in the boundary. In a (complicated) reduction of our Type

IIB plus Born-Infeld action to five dimensions, we would see some SU(Nf ) gauge fields (as

many as branches of flavor branes we added) that would enter in the holographic formulas

to compute field theory correlators.

It is interesting to notice that depending on the physical situation we want to work with,

we should choose the approach used here or the complementary one of finding a solution

purely in supergravity. Indeed, for situations where we do not want to take into account

the “flavor degrees of freedom” of the extra branes, but what we want is to introduce some

operator in the dual field theory (like a giant graviton, a domain wall or a Wilson line)

we should work within the purely supergravity approach [43]. Indeed, if we are thinking

about the presence of an operator (say in N = 4 SYM), there should be no “flavor degrees

of freedom” in the solutions.

Finally, we would like to comment on the smearing procedure. One way in which we

can think about it is to realize that usually (unless they are D9 branes) the “localized”

flavor branes will break part of the isometries of the original background dual to the

unflavored field theory. The “smeared” flavor branes on the other hand reinstate these

isometries (global symmetries of the field theory dual). In some sense the flavor branes are

‘deconstructing’ these dimensions (or these global groups) for the field theory of interest.

In the case in which we have a finite number of flavors, these manifolds become fuzzy, while

for Nf → ∞, we recover the full invariance.
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A. SUSY transformations in string and Einstein frame

The supersymmetry transformations of Type IIB supergravity were found long ago in

ref. [44]. Here we will follow the conventions of the appendix A of [45], where they are
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written in string frame. Let us recall them:

δελ
(s) =

1

2

(
Γ(s) M∂Mφ +

1

2

1

3!
HMNP Γ(s) MNP σ3

)
ε(s) − 1

2
eφ

(
F

(1)
M Γ(s) M (iσ2) +

+
1

2

1

3!
F

(3)
MNP Γ(s) MNP σ1

)
ε(s),

δεψ
(s)
M = ∇(s)

M ε(s) +
1

4

1

2!
HMNP Γ(s) NP σ3ε

(s) +
1

8
eφ

(
F

(1)
N Γ(s) N (iσ2) +

+
1

3!
F

(3)
NPQ Γ(s) NPQ σ1 +

1

2

1

5!
F

(5)
NPQRT Γ(s) NPQRT (iσ2)

)
Γ

(s)
M ε(s) , (A.1)

where the superscript s refers to the string frame, σi i = 1, 2, 3 are the Pauli matrices, H

is the NSNS three-form and F (1), F (3) and F (5) are the RR field strengths. In (A.1) ε is a

doublet of Majorana-Weyl spinors of positive chirality.

We can study how these equations change under a rescaling of the metric like

g
(s)
MN = e

φ
2 gMN . (A.2)

In doing that it is useful to follow section 2 of [46]. Under the above change for the metric,

there are some quantities which also change:

Γ
(s)
M = e

φ
4 ΓM ,

ε(s) = e
φ
8 ε ,

λ(s) = e−
φ
8 λ ,

ψM = e−
φ
8

(
ψ

(s)
M − 1

4
Γ

(s)
M λ(s)

)
. (A.3)

The equation for the dilatino in the new frame can be easily obtained whereas in doing the

same for the gravitino equation we will use that

∇(s)
M ε(s) = e

φ
8

[
∇M ε +

1

8
Γ N

M (∇Nφ) +
1

8
(∇Mφ)

]
. (A.4)

After some algebra with gamma-matrices, the SUSY transformations in Einstein frame we

obtain are the following ones:

δελ =
1

2
ΓM

(
∂Mφ − eφF

(1)
M (iσ2)

)
ε +

1

4

1

3!
ΓMNP

(
e−

φ
2 HMNP σ3 − e

φ
2 F

(3)
MNP σ1

)
ε,

δεψM = ∇Mε +
1

4
eφF

(1)
M (iσ2)ε −

1

96

(
e−

φ
2 HNPQσ3 + e

φ
2 F

(3)
NPQσ1

)(
Γ NPQ

M − 9δN
MΓPQ

)
ε +

+
1

16

1

5!
F

(5)
NPQRT ΓNPQRT (iσ2)ΓM ε. (A.5)

In order to write the expression of the SUSY transformations, it is convenient to change

the notation used for the spinor. Up to now we have considered the double spinor notation,

namely the two Majorana-Weyl spinors ε1 and ε2 form a two-dimensional vector

(
ε1

ε2

)
.

We can rewrite the double spinor in complex notation as22 ε = ε1 − iε2. It is then

straightforward to find the following rules to pass from complex to real spinors:

ε∗ ↔ σ3 ε , −iε∗ ↔ σ1 ε , iε ↔ iσ2 ε , (A.6)

22Notice that there is an ambiguity in the choice of the relation between complex and real spinors.
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where the Pauli matrices act on the two-dimensional vector

(
ε1

ε2

)
.

B. The unflavored solutions

In this appendix we will study our BPS system of linear ordinary differential equa-

tions (2.36), (2.39) and we will find its general solution in the absence of D7-branes. Not

only we will recover the solution describing a stack of D3-branes placed at the apex of the

real Calabi-Yau cone over a generic Sasaki-Einstein 5-manifold M5, preserving (at least)

four supercharges, and its near-horizon limit AdS5 × M5 dual to the (at least) N = 1 su-

perconformal gauge theory describing the IR dynamics on the stack of D3-branes, but also

the solution describing D3-branes smeared homogeneously on a blown-up 4-cycle inside the

Calabi-Yau, discussed in the paper [34] for the case of the conifold (more precisely a Z2

orbifold of it) and then in full generality in [35] for all Calabi-Yau cones. We will also study

the unflavored limit of the general deformation of the KW model analyzed in section 3.5

and we will show that it gives rise to the two-parameter metrics found in ref. [34].

Let us look at our BPS system of linear ordinary differential equations (2.36- 2.39). We

will sometimes refer to the case of the conifold for the sake of simplicity. The generaliza-

tion to any Sasaki-Einstein is straightforward, the only difference being the normalization

in (2.39) and in the RR 5-form field strength, related to the volume of the Sasaki-Einstein

base.

First of all notice that Nf must be set to zero in the system of equations and not in

our solution, since when we solved the equation for the dilaton (2.38) we supposed that

Nf 6= 0. This allowed us to get (2.40) after shifting the radial variable.

It is easy to show that the most general solution to the BPS system when Nf = 0, up

to redefinition of the coordinates, is the following:

φ(ρ) = φ0 (B.1)

eg(ρ) =
[
e6ρ + c1

]1/6
(B.2)

ef(ρ) = e3ρ
[
e6ρ + c1

]−1/3
(B.3)

h(ρ) = c2 − 4L4

∫
dρ e−4g(ρ) (B.4)

r(ρ) =

∫
dρ ef(ρ) . (B.5)

L is the common radius of AdS5 and the Sasaki-Einstein M5 in the solution dual to the

superconformal theory, and is fixed by the number of D3 branes and the volume of the

Sasaki-Einstein manifold. For T 1,1: L4 = 27
4 πNc.

The real integration constant c1 discriminates different classes of solutions.

If c1 = 0 then we recover the D3-branes solution (with nonzero c2, that can be fixed

to 1) or its near-horizon AdS solution (with c2 = 0):

ef = eg = eρ = r (B.6)

h = c2 +
L4

r4
. (B.7)
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If c1 > 0 the solution describes Nc smeared D3-branes on the blown-up 4-cycle of the

Calabi-Yau [34, 35]. Indeed, let’s consider the change of radial coordinate:

[
1 + c1e

−6ρ
]−1

= 1 − b6

r6
≡ k(r) , (B.8)

with r > b. If we further identify

b2 = c
1/3
1 , (B.9)

it follows that

e2g = r2 (B.10)

e2f = r2k(r) (B.11)

e2fdρ2 =
dr2

k(r)
, (B.12)

so that the 6-dimensional metric, which is Calabi-Yau, is

ds2
6 = [k(r)]−1dr2 +

k(r)r2

9
(dψ +

∑

i=1,2

cos θidϕi)
2 +

r2

6

∑

i=1,2

(dθ2
i + sin2 θidϕ2

i ) , (B.13)

that describes a deformation of the Calabi-Yau where a Kähler-Einstein 4-cycle is blown up

at r = b. In order for the resolved Calabi-Yau to be smooth, an orbifolding along the U(1)

fiber parameterized by ψ is usually needed. For the case of the deformation of the conifold

the orbifold action is Z2, so that ψ ranges from 0 to 2π. The 10-dimensional metric of the

solution is then:

ds2
10 = [h(r)]−1/2dx2

1,3 + [h(r)]1/2ds2
6 , (B.14)

with the warp factor23

h(r) = −2
L4

b4

[
1

6
log

(r̃2 − 1)3

r̃6 − 1
+

1√
3

(π

2
− arctan

2r̃2 + 1√
3

)]
, r̃ =

r

b
. (B.15)

The gauge theory dual to this local Kähler deformation of the Calabi-Yau cone is a de-

formation of the superconformal theory due to the insertion of a VEV of a dimension 6

operator, which is a combination of the operators Tr(WαW̄α)2, Wα being the gluino super-

field [35]. The orbifold action is needed to have a dual field theory whose mesonic branch

of the moduli space is (the symmetric product of Nc copies of) the resolved Calabi-Yau.

A similar analysis can be done for the solutions with c1 < 0, but in that case the

6-dimensional transverse space happens to have a curvature singularity and cannot be

described as an algebraic variety. Therefore the supergravity solution is not expected to

describe a dual supersymmetric gauge theory.

Let us now study the unflavored limit of the general deformation of the KW solution

of section 3.5. Recall that, in this case, the metric depends on three functions (f , g1 and

23The additive integration constant in h is omitted in order to asymptote to AdS5 × X5 for large values

of r.
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g2) and the warp factor h. In terms of the variable ρ introduced in (3.85) the metric can

be written as:

ds2 = h−1/2dx2
1,3 + h1/2 e2f

{
dρ2 +

1

6

∑

i=1,2

e2gi−2f (dθ2
i + sin2 θi dϕ2

i ) +

+
1

9

(
dψ +

∑

i=1,2

cos θi dϕi

)2}
. (B.16)

The unflavored limit of the BPS system (3.84) amounts to taking C = 0. As in the previous

case, the solution of section 3.5 is not valid in this limit (see eq. (3.87)) and one has to take

C = 0 in the system (3.84) and integrate it again following the same steps as in section 3.5.

The result can be written in terms of the function e2g2(ρ), which is the solution of the

following cubic equation:

e6g2 +
3

2
a2 e4g2 = e6ρ + c1 , (B.17)

where c1 is an integration constant. In terms of e2g2(ρ) the other functions of the ansatz

can be written as:

e2g2 = e2g1 + a2 ,

e2f =
e6ρ

e4g2 + a2 e2g2
,

h(ρ) = −Q

∫
dρ

e4g2 + a2 e2g2
+ c2 , (B.18)

where Q is given by (3.83) and c2 is a new integration constant. Let us now perform the

following change of radial variable

e2g2(ρ) =
r2

6
. (B.19)

Taking into account (B.17), the inverse relation between these two radial variables is:

e6ρ =
1

216

[
r6 + 9a2r4 − b6

]
, (B.20)

where we have redefined the constant c1 as:

b2 ≡ 6 (c1)
1

3 . (B.21)

By using these relations, one can readily prove that:

e2g1 =
1

6
(r2 + 6a2) ,

e2f =
r2

6
κ(r) , (B.22)

where the function κ(r) is defined as follows:

κ(r) ≡ r6 + 9a2 r4 − b6

r6 + 6a2r4
. (B.23)
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It is also easy to verify that:

dρ =
dr

rκ(r)
. (B.24)

Using these results and redefining the warp factor as h(r)−
1

2 → h(r)−
1

2 /6, we get a metric

of the form:

ds2 =
[
h(r)

]− 1

2

[
dx2

1,3

]
+

[
h(r)

] 1

2 ds2
6 , (B.25)

with ds2
6 given by:

ds2
6 =

[
κ(r)

]−1
dr2 +

r2

9
κ(r) ( dψ +

∑

a=1,2

cos θi dϕi )2 +

+
1

6
( r2 + 6a2 ) ( dθ2

1 + sin2 θ1 dϕ2
1 ) +

1

6
r2 ( dθ2

2 + sin2 θ2 dϕ2
2 ) , (B.26)

while the warp factor h can be represented as:

h(r) = −Q

∫
rdr

r6 + 9a2 r4 − b6
+ c2 . (B.27)

This is the solution with two Kähler deformations found in ref. [34]: the a constant pa-

rameterizes global deformations, while the b parameter corresponds to local deformations.

C. Alternative interpretation of the IR regime

Here we put an alternative description of the IR theory as deduced from supergravity,

which honestly we could not discard. It mainly arises from the analysis of the Klebanov-

Witten model at small values of the string coupling, and it is based on the non-validity of

the orbifold relations (2.69)-(2.72) for all values of the parameters in the KW model, that

was extensively pointed out in [13]. In the whole analysis that will follow, we will consider

for clarity only the case of equal gauge couplings g1 = g2 ≡ g.

The curve of conformal points in the Klebanov-Witten model is obtained by requir-

ing the anomalous dimension of the fields A,B to be γA(g, λ̃) = −1/2, which assures

βg = βλ̃ = 0 (λ̃ is the dimensionless coupling from the quartic superpotential). The qual-

itative shape of the curve is depicted in figure 4, as well as some possible RG flows. The

important feature is that there is a minimum value g∗ > 0 that fixed points can have (due

to the perturbative βg being negative, so that g = 0 is an unstable IR point). One way

to determine this curve of fixed points is to apply the a-maximization procedure originally

spelled in [47] by using Lagrange multipliers enforcing the marginality constraints [48],

and then express the Lagrange multipliers in terms of the gauge and superpotential cou-

plings. This computation for the Klebanov-Witten model was done in [49].24 One can show

that the curve of fixed points does not pass through the origin of the space of Lagrange

multipliers, which is mapped into the origin of the space of couplings (free theory). In a

particular scheme the curve of fixed points is an arc of hyperbola with the major axis along

λ̃ = 0. The exact shape of the curve is scheme-dependent, due to scheme-dependence of

24We thank Sergio Benvenuti for making us aware of this method and of the literature on the subject.
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γA = −1/2

g∗

g

γA < −1/2

λ̃

γA > −1/2

eφ

Figure 4: RG flow phase space for the

Klebanov-Witten model.

g∗

g

λ̃

C
B

A

eφ

γQ ' 1

γQ ' 1

4

Figure 5: Klebanov-Witten model with fla-

vors. The A-C flow has backreacting D7’s in

the A piece and then follows the KW line in the

C piece; it corresponds to Nf ¿ Nc. The B flow

is always far from the KW line, and corresponds

to Nf & Nc.

the relation between Lagrange multipliers and couplings: we choose a scheme in which the

Lagrange multipliers are quadratic in the couplings. This choice fixes a conic section, and

it is such a hyperbola because the one-loop anomalous dimensions of the chiral superfields

get a negative contribution from gauge interactions and a positive contribution from su-

perpotential interactions. The conclusion that the curve of conformal points does not pass

through the origin of the space of coupling constants is physical.

The family of KW SUGRA solutions describes the fixed curve. It is parameterized

by eφ that can take arbitrary values. For sufficiently large values of it, we can trust the

orbifold formula:
g2

8π
= eφ for eφ Nc & 1 . (C.1)

The ’t Hooft coupling g2Nc is large (at least of order 1, so the theory is strongly coupled and

the anomalous dimensions are of order 1) and the string frame curvature RS ∼ 1/(eφNc) is

small. For smaller values eφNc . 1, (C.1) cannot be correct: it would give small ’t Hooft

coupling while the gauge theory is always strongly coupled. The bottom end of the line

corresponds to:

{eφ → 0} ↔ {g = g∗, λ̃ = 0} , (C.2)

and the SUGRA curvature is large even if the field theory is still strongly coupled. Anyway

some quantities, for instance the quantum dimension of A,B, are protected and do not

depend on the coupling, so they can be computed in SUGRA even for small values of

eφNc.

The supergravity solution of our system with D7-branes is in the IR quite similar to the

KW geometry: the IR asymptotic background is AdS5 × T 1,1 (with corrections), but with

running dilaton. The field theory is thus deduced to be close to KW fixed line, but running
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along it as eφ → 0 in the IR. Moreover, eφ controls the gravitational backreaction of the

D7-branes (as well as the gauge coupling), and as soon as eφNf . 1 the branes behave as

probes. In this regime, we expect the quantities computable from the background to be

equal to the KW model ones: in particular γA = −1/2.

We can distinguish different regimes, starting from the UV to the IR. Depending on

the values of Nc and Nf they can be either well separated or not present at all. A section

of the space of couplings and some RG flows are drawn in figure 5, but one should include

the third orthogonal direction h which is not plotted.

• For 1 < eφ we are in the Landau pole regime, and the dilaton (string coupling eφ) is

large.

• For 1
Nf

< eφ < 1 we are in a complicated piece of the flow, quite far from the KW

fixed line, as in the type A-B flows of figure 5. In particular the D7-branes are

backreacting. In this regime our SUGRA solution is perfectly behaved (as long as
1

Nc
< eφ).

• For 1
Nc

< eφ < 1
Nf

(this regime exists for Nf < Nc) we are in a region with almost

probe D7-branes,25 so we are close to the KW line, but with large ’t Hooft coupling,

so we can trust (C.1). We can expect the energy/radius relation to be quite similar to

the conformal one, thus we can compute the gauge β-function and deduce the flavor

anomalous dimensions γQ. Apart from corrections, we get:

γA ' −1

2
RA ' 1

2
γQ ' 1

4
RQ ' 3

4
. (C.3)

The R-symmetry is classically preserved but anomalous as in supergravity. The

various β-functions are computed to be

βg =
3

4
Nf

g3

16π2
βλ̃ ' 0 βh ' 0 . (C.4)

We want to stress that this regime in not conformal, and in fact the theory flows

along the KW fixed line, as in the type C flow of figure 5. The smaller is Nf/Nc,

the longer is this piece of the flow. For Nf & Nc this regime does not exist, and the

theory follows type B flow of figure 5.

• For eφ < Min( 1
Nc

, 1
Nf

) we are close to the end of the KW fixed line, and the gauge

coupling is close to g∗. Again the D7’s are almost probes. The string frame curvature

is large, as in the KW model at small gsNc. Since the gauge coupling cannot go below

g∗, its β-function vanishes even if the string coupling continues flowing to zero. We

get in field theory:

γA ' −1

2
RA ' 1

2
γQ ' 1 RQ ' 3

4
(C.5)

25The dual in field theory of the D7’s being probes is that graphs with flavors in the loops are suppressed

with respect to gauge fields in the loops, since Nf < Nc.
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Figure 6: Flavor 1-loop correction to the

gauge propagator.

eφ

1

Pole

1

Nc

1

Nf

γQ = 1 γQ = 1

4
FLOW

Figure 7: Regimes of KW with flavors for

Nf < Nc.

βg ' 0 βλ̃ ' 0 βh =
3

4
h . (C.6)

All the flows accumulate at the point {g = g∗, λ̃ = 0} of figure 5, but the theory is

not conformal. In fact the coupling h always flows to smaller values, and the theory

moves “orthogonal” to the figure. For this reason γQ and RQ do not satisfy the

relation of superconformal theories.

• The end of the flow is the superconformal point with h = 0 (and g = g∗), which should

correspond to eφ = 0 and cannot be described by supergravity. Without the cubic

superpotential one can construct a new anomaly free R-symmetry with RQ = 1, by

combining the previous one (RQ = 3/4) with the anomalous axial symmetry which

gives charge 1/4 to every flavor. This satisfies known theorems on superconformal

theories. Moreover, the fact that h → 0 in the far infrared realizes in field theory the

incapability of resolving the D7 separation at small energies, and the flavor symmetry

S(U(Nf ) × U(Nf )) is restored.

Note that when Nf & Nc and the D7-branes are probes (this is the regime eφ < 1
Nf

<
1

Nc
and g = g∗) one could think hard to see in field theory a suppression of graphs with

flavors in the loops, with respect to gauge fields in the loops. Consider the gauge propagator

at 1-loop with flavors (figure 6). It is of order g2
∗Nf , not suppressed with respect to the

graph with gauge fields in the loop of order g2
∗Nc. But if we sum all the loops with flavors,

we must obtain the flavor contribution to the β-function, which for g ' g∗ and so γQ ' 1

is indeed very small.

A summary of the phase space for Nf < Nc is in figure 7. The computation in [21] is

valid in the region 1
Nc

< eφ < 1
Nf

of the phase space.
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